4,503 research outputs found

    Efficient Large-scale Distance-Based Join Queries in SpatialHadoop

    Get PDF
    Efficient processing of Distance-Based Join Queries (DBJQs) in spatial databases is of paramount importance in many application domains. The most representative and known DBJQs are the K Closest Pairs Query (KCPQ) and the ε Distance Join Query (εDJQ). These types of join queries are characterized by a number of desired pairs (K) or a distance threshold (ε) between the components of the pairs in the final result, over two spatial datasets. Both are expensive operations, since two spatial datasets are combined with additional constraints. Given the increasing volume of spatial data originating from multiple sources and stored in distributed servers, it is not always efficient to perform DBJQs on a centralized server. For this reason, this paper addresses the problem of computing DBJQs on big spatial datasets in SpatialHadoop, an extension of Hadoop that supports efficient processing of spatial queries in a cloud-based setting. We propose novel algorithms, based on plane-sweep, to perform efficient parallel DBJQs on large-scale spatial datasets in Spatial Hadoop. We evaluate the performance of the proposed algorithms in several situations with large real-world as well as synthetic datasets. The experiments demonstrate the efficiency and scalability of our proposed methodologies

    Efficient Processing of k Nearest Neighbor Joins using MapReduce

    Full text link
    k nearest neighbor join (kNN join), designed to find k nearest neighbors from a dataset S for every object in another dataset R, is a primitive operation widely adopted by many data mining applications. As a combination of the k nearest neighbor query and the join operation, kNN join is an expensive operation. Given the increasing volume of data, it is difficult to perform a kNN join on a centralized machine efficiently. In this paper, we investigate how to perform kNN join using MapReduce which is a well-accepted framework for data-intensive applications over clusters of computers. In brief, the mappers cluster objects into groups; the reducers perform the kNN join on each group of objects separately. We design an effective mapping mechanism that exploits pruning rules for distance filtering, and hence reduces both the shuffling and computational costs. To reduce the shuffling cost, we propose two approximate algorithms to minimize the number of replicas. Extensive experiments on our in-house cluster demonstrate that our proposed methods are efficient, robust and scalable.Comment: VLDB201

    Scalable aggregation predictive analytics: a query-driven machine learning approach

    Get PDF
    We introduce a predictive modeling solution that provides high quality predictive analytics over aggregation queries in Big Data environments. Our predictive methodology is generally applicable in environments in which large-scale data owners may or may not restrict access to their data and allow only aggregation operators like COUNT to be executed over their data. In this context, our methodology is based on historical queries and their answers to accurately predict ad-hoc queries’ answers. We focus on the widely used set-cardinality, i.e., COUNT, aggregation query, as COUNT is a fundamental operator for both internal data system optimizations and for aggregation-oriented data exploration and predictive analytics. We contribute a novel, query-driven Machine Learning (ML) model whose goals are to: (i) learn the query-answer space from past issued queries, (ii) associate the query space with local linear regression & associative function estimators, (iii) define query similarity, and (iv) predict the cardinality of the answer set of unseen incoming queries, referred to the Set Cardinality Prediction (SCP) problem. Our ML model incorporates incremental ML algorithms for ensuring high quality prediction results. The significance of contribution lies in that it (i) is the only query-driven solution applicable over general Big Data environments, which include restricted-access data, (ii) offers incremental learning adjusted for arriving ad-hoc queries, which is well suited for query-driven data exploration, and (iii) offers a performance (in terms of scalability, SCP accuracy, processing time, and memory requirements) that is superior to data-centric approaches. We provide a comprehensive performance evaluation of our model evaluating its sensitivity, scalability and efficiency for quality predictive analytics. In addition, we report on the development and incorporation of our ML model in Spark showing its superior performance compared to the Spark’s COUNT method

    Approximate Matching for Peer-to-Peer Overlays with Cubit

    Full text link
    Keyword search is a critical component in most content retrieval systems. Despite the emergence of completely decentralized and efficient peer-to-peer techniques for content distribution, there have not been similarly efficient, accurate, and decentralized mechanisms for content discovery based on approximate search keys. In this paper, we present a scalable and efficient peer-to-peer system called Cubit with a new search primitive that can efficiently find the k data items with keys most similar to a given search key. The system works by creating a keyword metric space that encompasses both the nodes and the objects in the system, where the distance between two points is a measure of the similarity between the strings that the points represent. It provides a loosely-structured overlay that can efficiently navigate this space. We evaluate Cubit through both a real deployment as a search plugin for a popular BitTorrent client and a large-scale simulation and show that it provides an efficient, accurate and robust method to handle imprecise string search in filesharing applications.This work was supported in part by NSF-TRUST 0424422 and NSF-CAREER 0546568 grants

    Relative NN-Descent: A Fast Index Construction for Graph-Based Approximate Nearest Neighbor Search

    Full text link
    Approximate Nearest Neighbor Search (ANNS) is the task of finding the database vector that is closest to a given query vector. Graph-based ANNS is the family of methods with the best balance of accuracy and speed for million-scale datasets. However, graph-based methods have the disadvantage of long index construction time. Recently, many researchers have improved the tradeoff between accuracy and speed during a search. However, there is little research on accelerating index construction. We propose a fast graph construction algorithm, Relative NN-Descent (RNN-Descent). RNN-Descent combines NN-Descent, an algorithm for constructing approximate K-nearest neighbor graphs (K-NN graphs), and RNG Strategy, an algorithm for selecting edges effective for search. This algorithm allows the direct construction of graph-based indexes without ANNS. Experimental results demonstrated that the proposed method had the fastest index construction speed, while its search performance is comparable to existing state-of-the-art methods such as NSG. For example, in experiments on the GIST1M dataset, the construction of the proposed method is 2x faster than NSG. Additionally, it was even faster than the construction speed of NN-Descent.Comment: Accepted by ACMMM 202
    corecore