27,207 research outputs found

    Fuzzy Clustering for Image Segmentation Using Generic Shape Information

    Get PDF
    The performance of clustering algorithms for image segmentation are highly sensitive to the features used and types of objects in the image, which ultimately limits their generalization capability. This provides strong motivation to investigate integrating shape information into the clustering framework to improve the generality of these algorithms. Existing shape-based clustering techniques mainly focus on circular and elliptical clusters and so are unable to segment arbitrarily-shaped objects. To address this limitation, this paper presents a new shape-based algorithm called fuzzy clustering for image segmentation using generic shape information (FCGS), which exploits the B-spline representation of an object's shape in combination with the Gustafson-Kessel clustering algorithm. Qualitative and quantitative results for FCGS confirm its superior segmentation performance consistently compared to well-established shape-based clustering techniques, for a wide range of test images comprising various regular and arbitrary-shaped objects

    Active skeleton for bacteria modeling

    Full text link
    The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modeling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness, orientation), an improved boundary accuracy in noisy images, and a natural bacteria-centered coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimizing an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modeling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.Comment: Published in Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualizationto appear i

    Diagrams Based on Structured Object Perception

    Get PDF
    Most diagrams, particularly those used in software engineering, are line drawings consisting of nodes drawn as rectangles or circles, and edges drawn as lines linking them. In the present paper we review some of the literature on human perception to develop guidelines for effective diagram drawing. Particular attention is paid to structural object recognition theory. According to this theory as objects are perceived they are decomposed into 3D set of primitives called geons, together with the skeleton structure connecting them. We present a set of guidelines for drawing variations on node-link diagrams using geon-like primitives, and provide some examples. Results from three experiments are reported that evaluate 3D geon diagrams in comparison with 2D UML (Unified Modeling Language) diagrams. The first experiment measures the time and accuracy for a subject to recognize a sub-structure of a diagram represented either using geon primitives or UML primitives. The second and third experiments compare the accuracy of recalling geon vs. UML diagrams. The results of these experiments show that geon diagrams can be visually analyzed more rapidly, with fewer errors, and can be remembered better in comparison with equivalent UML diagrams

    A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70774Segmentation involves separating an object from the background in a given image. The use of image information alone often leads to poor segmentation results due to the presence of noise, clutter or occlusion. The introduction of shape priors in the geometric active contour (GAC) framework has proved to be an effective way to ameliorate some of these problems. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, using level-sets. Following the work of Leventon et al., we propose to revisit the use of PCA to introduce prior knowledge about shapes in a more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description permits to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, occlusions, or smearing

    Catching butterflies in the sky: Extended catalog of winged or X-shaped radio sources from the latest FIRST data release

    Get PDF
    We present a catalog of 290 "winged" or X-shaped radio galaxies (XRGs) extracted from the latest (2014 December 17) data release of the "Very Large Array Faint Images of the Radio Sky at Twenty centimeter." We have combined these radio images with their counterparts in the TIFR GMRT sky survey at 150 MHz, in an attempt to identify any low surface brightness radio emission present in these sources. This has enabled us to assemble a sample of 106 "strong" XRG candidates and 184 "probable" XRG candidates whose XRG designation needs to be verified by further observations. The present sample of 290 XRG candidates is almost twice as large as the number of XRGs currently known. Twenty-five of our 290 XRG candidates (9 "strong" and 16 "probable") are identified as quasars. Double-peaked narrow emission lines are seen in the optical spectra of three of the XRG candidates (two "strong" and one "probable"). Nearly 90% of the sample is located in the FR II domain of the Owen-Ledlow diagram. A few of the strong XRG candidates have a rather flat radio spectrum (spectral index alpha flatter than -0.3) between 150 MHz and 1.4 GHz, or between 1.4 and 5 GHz. Since this is not expected for lobe-dominated extragalactic radio sources (like nearly all known XRGs), these sources are particularly suited for follow-up radio imaging and near-simultaneous measurement of the radio spectrum.Comment: 22 pages, 9 figures, 3 tables, accepted for publication in ApJ
    • 

    corecore