118 research outputs found

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure

    XJ-BP: Express Journey Belief Propagation Decoding for Polar Codes

    Full text link
    This paper presents a novel propagation (BP) based decoding algorithm for polar codes. The proposed algorithm facilitates belief propagation by utilizing the specific constituent codes that exist in the factor graph, which results in an express journey (XJ) for belief information to propagate in each decoding iteration. In addition, this XJ-BP decoder employs a novel round-trip message passing scheduling method for the increased efficiency. The proposed method simplifies min-sum (MS) BP decoder by 40.6%. Along with the round-trip scheduling, the XJ-BP algorithm reduces the computational complexity of MS BP decoding by 90.4%; this enables an energy-efficient hardware implementation of BP decoding in practice.Comment: submitted to GLOBECOMM 201

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Stability of Iterative Decoding of Multi-Edge Type Doubly-Generalized LDPC Codes Over the BEC

    Full text link
    Using the EXIT chart approach, a necessary and sufficient condition is developed for the local stability of iterative decoding of multi-edge type (MET) doubly-generalized low-density parity-check (D-GLDPC) code ensembles. In such code ensembles, the use of arbitrary linear block codes as component codes is combined with the further design of local Tanner graph connectivity through the use of multiple edge types. The stability condition for these code ensembles is shown to be succinctly described in terms of the value of the spectral radius of an appropriately defined polynomial matrix.Comment: 6 pages, 3 figures. Presented at Globecom 2011, Houston, T

    Unequal Error Protection Raptor Codes

    Get PDF
    We design Unequal Error Protection (UEP) Raptor codes with the UEP property provided by the precode part of Raptor codes which is usually a Low Density Parity Check (LDPC) code. Existing UEP Raptor codes apply the UEP property on the Luby transform (LT) code part of Raptor codes. This approach lowers the bit erasure rate (BER) of the more important bits (MIB) of the data decoded by the LT part of the decoder of Raptor code at the expense of degrading the BER performance of Less Important Bits (LIB), and hence the overall BER of the data passed from the LT part to the LDPC part of the decoder is higher compared to the case of using an Equal Error Protection (EEP) LT code. The proposed UEP Raptor code design has the structure of UEP LDPC code and EEP LT code so that it has the advantage of passing data blocks with lower BER from the LT code part to the LDPC code part of the decoder. This advantage is translated into improved performance in terms of required overhead and achieved BER on both the MIB bits and LIB bits of the decoded data compared to UEP Raptor codes applying the UEP property on the LT part. We propose two design schemes. The first combines a partially regular LDPC code which has UEP properties with an EEP LT code, and the second scheme uses two LDPC codes with different code rates in the precode part such that the MIB bits are encoded using the LDPC code with lower rate and the LT part is EEP. Simulations of both designs exhibit improved BER performance on both the MIB bits and LIB bits while consuming smaller overheads. The second design can be used to provide unequal protection for cases where the MIB bits comprise a fraction of more than 0.4 of the source data which is a case where UEP Raptor codes with UEP LT codes perform poorly
    • …
    corecore