6,859 research outputs found

    An approach to one-bit compressed sensing based on probably approximately correct learning theory

    Get PDF
    In this paper, the problem of one-bit compressed sensing (OBCS) is formulated as a problem in probably approximately correct (PAC) learning. It is shown that the VapnikChervonenkis (VC-) dimension of the set of half-spaces in Rn generated by k-sparse vectors is bounded below by k(blg(n=k)c + 1) and above by b2k lg(en)c. By coupling this estimate with well-established results in PAC learning theory, we show that a consistent algorithm can recover a k-sparse vector with O(k lg n) measurements, given only the signs of the measurement vector. This result holds for all probability measures on Rn. The theory is also applicable to the case of noisy labels, where the signs of the measurements are flipped with some unknown probability

    Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Get PDF
    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionaly, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS

    Estimation in high dimensions: a geometric perspective

    Full text link
    This tutorial provides an exposition of a flexible geometric framework for high dimensional estimation problems with constraints. The tutorial develops geometric intuition about high dimensional sets, justifies it with some results of asymptotic convex geometry, and demonstrates connections between geometric results and estimation problems. The theory is illustrated with applications to sparse recovery, matrix completion, quantization, linear and logistic regression and generalized linear models.Comment: 56 pages, 9 figures. Multiple minor change

    Learning from compressed observations

    Full text link
    The problem of statistical learning is to construct a predictor of a random variable YY as a function of a related random variable XX on the basis of an i.i.d. training sample from the joint distribution of (X,Y)(X,Y). Allowable predictors are drawn from some specified class, and the goal is to approach asymptotically the performance (expected loss) of the best predictor in the class. We consider the setting in which one has perfect observation of the XX-part of the sample, while the YY-part has to be communicated at some finite bit rate. The encoding of the YY-values is allowed to depend on the XX-values. Under suitable regularity conditions on the admissible predictors, the underlying family of probability distributions and the loss function, we give an information-theoretic characterization of achievable predictor performance in terms of conditional distortion-rate functions. The ideas are illustrated on the example of nonparametric regression in Gaussian noise.Comment: 6 pages; submitted to the 2007 IEEE Information Theory Workshop (ITW 2007

    Sketching for Large-Scale Learning of Mixture Models

    Get PDF
    Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing
    corecore