5,626 research outputs found

    Configuration control of seven-degree-of-freedom arms

    Get PDF
    A seven degree of freedom robot arm with a six degree of freedom end effector is controlled by a processor employing a 6 by 7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more) by 7 Jacobian matrix for defining 1 (or more) user specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more) by 7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7 by 7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arm. One of the kinematic functions constraints the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizes a sum of gravitational torques on the joints. Still another kinematic function constrains the location of the arm to perform collision avoidance. Generically, one kinematic function minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or gravity torques associated with individual joints

    Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    Get PDF
    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm for obstacle avoidance was developed. The algorithm derives a collision free path of the end-effector of the robot around known obstacles to the target location in O(n) time. In a case study, using the rehabilitation robot ARM, the performance of the algorithm was tested. As was a newly human-machine-interface offering this record-and-replay functionality to the use

    Collision-free motion of two robot arms in a common workspace

    Get PDF
    Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed

    Motion planning with dynamics awareness for long reach manipulation in aerial robotic systems with two arms

    Get PDF
    Human activities in maintenance of industrial plants pose elevated risks as well as significant costs due to the required shutdowns of the facility. An aerial robotic system with two arms for long reach manipulation in cluttered environments is presented to alleviate these constraints. The system consists of a multirotor with a long bar extension that incorporates a lightweight dual arm in the tip. This configuration allows aerial manipulation tasks even in hard-to-reach places. The objective of this work is the development of planning strategies to move the aerial robotic system with two arms for long reach manipulation in a safe and efficient way for both navigation and manipulation tasks. The motion planning problem is addressed considering jointly the aerial platform and the dual arm in order to achieve wider operating conditions. Since there exists a strong dynamical coupling between the multirotor and the dual arm, safety in obstacle avoidance will be assured by introducing dynamics awareness in the operation of the planner. On the other hand, the limited maneuverability of the system emphasizes the importance of energy and time efficiency in the generated trajectories. Accordingly, an adapted version of the optimal Rapidly-exploring Random Tree algorithm has been employed to guarantee their optimality. The resulting motion planning strategy has been evaluated through simulation in two realistic industrial scenarios, a riveting application and a chimney repairing task. To this end, the dynamics of the aerial robotic system with two arms for long reach manipulation has been properly modeled, and a distributed control scheme has been derived to complete the test bed. The satisfactory results of the simulations are presented as a first validation of the proposed approach.Unión Europea H2020-644271Ministerio de Ciencia, Innovación y Universidades DPI2014-59383-C2-1-

    Resolution of seven-axis manipulator redundancy: A heuristic issue

    Get PDF
    An approach is presented for the resolution of the redundancy of a seven-axis manipulator arm from the AI and expert systems point of view. This approach is heuristic, analytical, and globally resolves the redundancy at the position level. When compared with other approaches, this approach has several improved performance capabilities, including singularity avoidance, repeatability, stability, and simplicity
    corecore