10,408 research outputs found

    Pay One, Get Hundreds for Free: Reducing Cloud Costs through Shared Query Execution

    Full text link
    Cloud-based data analysis is nowadays common practice because of the lower system management overhead as well as the pay-as-you-go pricing model. The pricing model, however, is not always suitable for query processing as heavy use results in high costs. For example, in query-as-a-service systems, where users are charged per processed byte, collections of queries accessing the same data frequently can become expensive. The problem is compounded by the limited options for the user to optimize query execution when using declarative interfaces such as SQL. In this paper, we show how, without modifying existing systems and without the involvement of the cloud provider, it is possible to significantly reduce the overhead, and hence the cost, of query-as-a-service systems. Our approach is based on query rewriting so that multiple concurrent queries are combined into a single query. Our experiments show the aggregated amount of work done by the shared execution is smaller than in a query-at-a-time approach. Since queries are charged per byte processed, the cost of executing a group of queries is often the same as executing a single one of them. As an example, we demonstrate how the shared execution of the TPC-H benchmark is up to 100x and 16x cheaper in Amazon Athena and Google BigQuery than using a query-at-a-time approach while achieving a higher throughput

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Towards Analytics Aware Ontology Based Access to Static and Streaming Data (Extended Version)

    Full text link
    Real-time analytics that requires integration and aggregation of heterogeneous and distributed streaming and static data is a typical task in many industrial scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing with analytics that restrict its use in important industrial applications. Based on our experience with Siemens, we argue that in order to overcome those limitations OBDA should be extended and become analytics, source, and cost aware. In this work we propose such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation techniques that allow to efficiently process analytical tasks over static and streaming data. We implement our approach in a system and evaluate our system with Siemens turbine data
    • …
    corecore