904 research outputs found

    Generalized Hamacher aggregation operators for intuitionistic uncertain linguistic sets: Multiple attribute group decision making methods

    Full text link
    © 2019 by the authors. In this paper, we consider multiple attribute group decision making (MAGDM) problems in which the attribute values take the form of intuitionistic uncertain linguistic variables. Based on Hamacher operations, we developed several Hamacher aggregation operators, which generalize the arithmetic aggregation operators and geometric aggregation operators, and extend the algebraic aggregation operators and Einstein aggregation operators. A number of special cases for the two operators with respect to the parameters are discussed in detail. Also, we developed an intuitionistic uncertain linguistic generalized Hamacher hybrid weighted average operator to reflect the importance degrees of both the given intuitionistic uncertain linguistic variables and their ordered positions. Based on the generalized Hamacher aggregation operator, we propose a method for MAGDM for intuitionistic uncertain linguistic sets. Finally, a numerical example and comparative analysis with related decision making methods are provided to illustrate the practicality and feasibility of the proposed method

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    An interval-valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives

    Get PDF
    This article proposes a framework to handle multiattribute group decision making problems with incomplete pairwise comparison preference over decision alternatives where qualitative and quantitative attribute values are furnished as linguistic variables and crisp numbers, respectively. Attribute assessments are then converted to interval-valued intuitionistic fuzzy numbers (IVIFNs) to characterize fuzziness and uncertainty in the evaluation process. Group consistency and inconsistency indices are introduced for incomplete pairwise comparison preference relations on alternatives provided by the decision-makers (DMs). By minimizing the group inconsistency index under certain constraints, an auxiliary linear programming model is developed to obtain unified attribute weights and an interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS). Attribute weights are subsequently employed to calculate distances between alternatives and the IVIFPIS for ranking alternatives. An illustrative example is provided to demonstrate the applicability and effectiveness of this method

    Using fuzzy numbers and OWA operators in the weighted average and its application in decision making

    Get PDF
    Se presenta un nuevo método para tratar situaciones de incertidumbre en los que se utiliza el operador OWAWA (media ponderada – media ponderada ordenada). A este operador se le denomina operador OWAWA borroso (FOWAWA). Su principal ventaja se encuentra en la posibilidad de representar la información incierta del problema mediante el uso de números borrosos los cuales permiten una mejor representación de la información ya que consideran el mínimo y el máximo resultado posible y la posibilidad de ocurrencia de los valores internos. Se estudian diferentes propiedades y casos particulares de este nuevo modelo. También se analiza la aplicabilidad de este operador y se desarrolla un ejemplo numérico sobre toma de decisiones en la selección de políticas fiscalesWe present a new approach for dealing with an uncertain environment when using the ordered weighted averaging – weighted averaging (OWAWA) operator. We call it the fuzzy OWAWA (FOWAWA) operator. The main advantage of this new aggregation operator is that it is able to represent the uncertain information with fuzzy numbers. Thus, we are able to give more complete information because we can consider the maximum and the minimum of the problem and the internal information between these two results. We study different properties and different particular cases of this approach. We also analyze the applicability of the new model and we develop a numerical example in a decision making problem about selection of fiscal policies

    Intuitionistic fuzzy edas method: an application to solid waste disposal site selection

    Get PDF
    Evaluation based on Distance from Average Solution (EDAS) is a new multicriteria decision making (MCDM) method, which is based on the distances of alternatives from the average scores of attributes. Classical EDAS has been already extended by using ordinary fuzzy sets in case of vague and incomplete data. In this paper, we propose an interval-valued intuitionistic fuzzy EDAS method, which is based on the data belonging to membership, nonmembership, and hesitance degrees. A sensitivity analysis is also given to show how robust decisions are obtained through the proposed intuitionistic fuzzy EDAS. The proposed intuitionistic fuzzy EDAS method is applied to the evaluation of solid waste disposal site selection alternatives. The comparative and sensitivity analyses are also included
    corecore