33,842 research outputs found

    Distributed Linguistic Representations in Decision Making: Taxonomy, Key Elements and Applications, and Challenges in Data Science and Explainable Artificial Intelligence

    Get PDF
    Distributed linguistic representations are powerful tools for modelling the uncertainty and complexity of preference information in linguistic decision making. To provide a comprehensive perspective on the development of distributed linguistic representations in decision making, we present the taxonomy of existing distributed linguistic representations. Then, we review the key elements and applications of distributed linguistic information processing in decision making, including the distance measurement, aggregation methods, distributed linguistic preference relations, and distributed linguistic multiple attribute decision making models. Next, we provide a discussion on ongoing challenges and future research directions from the perspective of data science and explainable artificial intelligence.National Natural Science Foundation of China (NSFC) 71971039 71421001,71910107002,71771037,71874023 71871149Sichuan University sksyl201705 2018hhs-5

    Modelling Heterogeneity among Experts in Multi-criteria Group Decision Making Problems

    Get PDF
    Heterogeneity in group decision making problems has been recently studied in the literature. Some instances of these studies include the use of heterogeneous preference representation structures, heterogeneous preference representation domains and heterogeneous importance degrees. On this last heterogeneity level, the importance degrees are associated to the experts regardless of what is being assessed by them, and these degrees are fixed through the problem. However, there are some situations in which the experts’ importance degrees do not depend only on the expert. Sometimes we can find sets of heterogeneously specialized experts, that is, experts whose knowledge level is higher on some alternatives and criteria than it is on any others. Consequently, their importance degree should be established in accordance with what is being assessed. Thus, there is still a gap on heterogeneous group decision making frameworks to be studied. We propose a new fuzzy linguistic multi-criteria group decision making model which considers different importance degrees for each expert depending not only on the alternatives but also on the criterion which is taken into account to evaluate them.FUZZYLINGProject TIN200761079FUZZYLING-II Project TIN201017876PETRI Project PET20070460Andalusian Excellence Project TIC-05299project of Ministry of Public Works 90/0

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Group decision-making based on heterogeneous preference relations with self-confidence

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Preference relations are very useful to express decision makers’ preferences over alternatives in the process of group decision-making. However, the multiple self-confidence levels are not considered in existing preference relations. In this study, we define the preference relation with self-confidence by taking multiple self-confidence levels into consideration, and we call it the preference relation with self-confidence. Furthermore, we present a two-stage linear programming model for estimating the collective preference vector for the group decision-making based on heterogeneous preference relations with self-confidence. Finally, numerical examples are used to illustrate the two-stage linear programming model, and a comparative analysis is carried out to show how self-confidence levels influence on the group decision-making results

    A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices

    Get PDF
    This article presents a goal programming framework to solve group decision making problems where decision-makers’ judgments are provided as incomplete interval additive reciprocal comparison matrices (IARCMs). New properties of multiplicative consistent IARCMs are put forward and used to define consistent incomplete IARCMs. A two-step goal programming method is developed to estimate missing values for an incomplete IARCM. The first step minimizes the inconsistency of the completed IARCMs and controls uncertainty ratios of the estimated judgments within an acceptable threshold, and the second step finds the most appropriate estimated missing values among the optimal solutions obtained from the previous step. A weighted geometric mean approach is proposed to aggregate individual IARCMs into a group IARCM by employing the lower bounds of the interval additive reciprocal judgments. A two-step procedure consisting of two goal programming models is established to derive interval weights from the group IARCM. The first model is devised to minimize the absolute difference between the logarithm of the group preference and that of the constructed multiplicative consistent judgment. The second model is developed to generate an interval-valued priority vector by maximizing the uncertainty ratio of the constructed consistent IARCM and incorporating the optimal objective value of the first model as a constraint. Two numerical examples are furnished to demonstrate validity and applicability of the proposed approach

    Dealing with Incomplete Information in Linguistic Group Decision Making by Means of Interval Type-2 Fuzzy Sets

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Nowadays in the social network based decision making processes, as the ones involved in e-commerce and e-democracy, multiple users with di erent backgrounds may take part and diverse alternatives might be involved. This diversity enriches the process but at the same time increases the uncertainty in the opinions. This uncertainty can be considered from two di erent perspectives: (i) the uncertainty in the meaning of the words given as preferences, that is motivated by the heterogeneity of the decision makers, (ii) the uncertainty inherent to any decision making process that may lead to an expert not being able to provide all their judgments. The main objective of this contribution is to address these two type of uncertainty. To do so the following approaches are proposed: Firstly, in order to capture, process and keep the uncertainty in the meaning of the linguistic assumption the Interval Type 2 Fuzzy Sets are introduced as a way to model the experts linguistic judgments. Secondly, a measure of the coherence of the information provided by each decision maker is proposed. Finally, a consistency based completion approach is introduced to deal with the uncertainty presented in the expert judgments. The proposed approach is tested in an e-democracy decision making scenario

    REVIEW OF MODELING PREFERENCES FOR DECISION MODELS

    Get PDF
    A group decision problem is set in environments where there is a common issue to solve, a set of possible options to choose, and a set of individuals who are experts and express their opinions about the set of possible alternatives with the intention to reach a collective decision as the unique solution of the problem in question. The modeling of the preferences of the decision-maker is an essential stage in the construction of models used in the theory of decision, operations research, economics, etc. On decision problems experts use models of representation of preferences that are close to their disciplines or fields of work. The structures of information most commonly used for the representation of the preferences of experts are vectors of utility, orders of preference and preference relations. In decision problems, the expression of preferences domain is the domain of information used by the experts to express their preferences, the main are numerical, linguistic, and intervalar stressing the multi-granular linguistic. This paper is a review of these concepts. Its purpose is to provide a guide of bibliographic references for these concepts, which are briefly discussed in this document

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed

    Granular computing and optimization model-based method for large-scale group decision-making and its application

    Get PDF
    In large-scale group decision-making process, some decision makers hesitate among several linguistic terms and cannot compare some alternatives, so they often express evaluation information with incomplete hesitant fuzzy linguistic preference relations. How to obtain suitable large-scale group decision-making results from incomplete preference information is an important and interesting issue to concern about. After analyzing the existing researches, we find that: i) the premise that complete preference relation is perfectly consistent is too strict, ii) deleting all incomplete linguistic preference relations that cannot be fully completed will lose valid assessment information, iii) semantics given by decision makers are greatly possible to be changed during the consistency improving process. In order to solve these issues, this work proposes a novel method based on Granular computing and optimization model for large-scale group decision-making, considering the original consistency of incomplete hesitant fuzzy linguistic preference relation and improving its consistency without changing semantics during the completion process. An illustrative example and simulation experiments demonstrate the rationality and advantages of the proposed method: i) semantics are not changed during the consistency improving process, ii) completion process does not significantly alter the inherent quality of information, iii) complete preference relations are globally consistent, iv) final large-scale group decision-making result is acquired by fusing complete preference relations with different weights
    • 

    corecore