13,907 research outputs found

    Cooperative impedance control with time-varying stiffness

    Get PDF
    The focus of much automation research has been to design controllers and robots that safely interact with the environment. One approach is to use impedance control to specify a relationship between a robot\u27s motion and force and control a grasped object\u27s apparent stiffness, damping, and inertia. Conventional impedance control practices have focused on position-based manipulators - which are inherently non-compliant - using constant, task-dependent impedances. In the event of large trajectory tracking errors, this implementation method generates large interaction forces that can damage the workcell. Additionally, these position-based devices require dedicated force/torque sensors to measure and apply forces. In this paper, we present an alternative impedance controller implemented on cooperating torque-based manipulators. Through the use of time-varying impedance parameters, this controller limits the interaction forces to ensure harmless manipulation. Successful completion of transport and insertion tasks demonstrated the effectiveness of the controller

    Cooperative Object Manipulation with Force Tracking on the da Vinci Research Kit

    Get PDF
    The da Vinci Surgical System is one of the most established robot-assisted surgery device commended for its dexterity and ergonomics in minimally invasive surgery. Conversely, it inherits disadvantages which are lack of autonomy and haptic feedback. In order to address these issues, this work proposes an industry-inspired solution to the field of force control in medical robotics. This approach contributes to shared autonomy by developing a controller for cooperative object manipulation with force tracking utilizing available manipulators and force feedback. To achieve simultaneous position and force tracking of the object, master and slave manipulators were assigned then controlled with Cartesian position control and impedance control respectively. Because impedance control requires a model-based feedforward compensation, we identified the lumped base parameters of mass, inertias, and frictions of a three degree-of-freedom double four-bar linkage mechanism with least squares and weighted least squares regression methods. Additionally, semidefinite programming was used to constrain the parameters to a feasible physical solution in standard parameter space. Robust stick-slip static friction compensation was applied where linear Viscous and Coulomb friction was inadequate in modeling the prismatic third joint. The Robot Operating System based controller was tested in RViz to check the cooperative kinematics of up to three manipulators. Additionally, simulation with the dynamic engine Gazebo verified the cooperative controller applying a constant tension force on a massless spring-damper virtual object. With adequate model feedback linearization, the cooperative impedance controller tested on the da Vinci Research Kit yielded stable tension force tracking while simultaneously moving in Cartesian space. The maximum force tracking error was +/- 0.5 N for both a compliant and stiff manipulated object

    Control of an anthropomorphic manipulator involved in physical human-robot interaction

    Get PDF
    Dissertação de mestrado em Engenharia MecânicaThe objective of the dissertation is to flexibly control the end effector velocity of a redundant 7-DOF manipulator by using a differential kinematics approach, while ensuring the safety of the robotic arm from exceeding the physical limits of joints in terms of position, velocity and acceleration. The thesis also contributes with a real-time obstacle avoidance strategy for controlling anthropomorphic robotic arms in dynamic obstacle environments, taking account of sudden appearances or disappearances of mobile obstacles. A method for compensating force errors due to changes in the orientation of end effectors, independent from structures of force sensors, is developed to achieve high accuracy in force control applications. A novel method, the Virtual Elastic System, is proposed to control mobile manipulators for physical Human-Robot Interaction (pHRI) tasks in dynamic environments, which enables the combination of an Inverse Differential Kinematics for redundant robotic arms and a Dynamical Systems approach for nonholonomic mobile platforms. Experiments with a 7-DOF robotic arm, side-mounted on a nonholonomic mobile platform, are presented with the whole robot obstacle avoidance, proving the efficiency of the developed method in pHRI scenarios, more specifically, cooperative human-robot object transportation tasks in dynamic environments. Extensions of the method for other mobile manipulators with holonomic mobile platforms or higher degrees of freedom manipulators are also demonstrated through simulations

    Accomplishing task-invariant assembly strategies by means of an inherently accommodating robot arm

    Get PDF
    Despite the fact that the main advantage of robot manipulators was always meant to be their flexibility, they have not been applied widely to the assembly of industrial components in situations other than those where hard automation might be used. We identify the two main reasons for this as the 'fragility' of robot operation during tasks that involve contact, and the lack of an appropriate user interface. This thesis describes an attempt to address these problems.We survey the techniques that have been proposed to bring the performance of cur¬ rent industrial robot manipulators in line with expectations, and conclude that the main obstacle in realising a flexible assembly robot that exhibits robust and reliable behaviour is the problem of spatial uncertainty.Based on observations of the performance of position-controlled robot manipulators and what is involved during rigid-body part mating, we propose a model of assembly tasks that exploits the shape invariance of the part geometry across instances of a task. This allows us to escape from the problem of spatial uncertainty because we are 110 longer working in spatial terms. In addition, because the descriptions of assembly tasks that we derive are task-invariant, i.e. they are not dependent on part size or location, they lend themselves naturally to a task-level programming interface, thereby simplifying the process of programming an assembly robot.the process of programming an assembly robot. However, to test this approach empirically requires a manipulator that is able to control the force that it applies, as well as being sensitive to environmental constraints. The inertial properties of standard industrial manipulators preclude them from exhibiting this kind of behaviour. In order to solve this problem we designed and constructed a three degree of freedom, planar, direct-drive arm that is open-loop force-controllable (with respect to its end-point), and inherently accommodating during contact.In order to demonstrate the forgiving nature of operation of our robot arm we imple¬ mented a generic crank turning program that is independent of the geometry of the crank involved, i.e. no knowledge is required of the location or length of the crank. I11 order to demonstrate the viability of our proposed approach to assembly we pro¬ grammed our robot system to perform some representative tasks; the insertion of a peg into a hole, and the rotation of a block into a corner. These programs were tested on parts of various size and material, and in various locations in order to illustrate their invariant nature.We conclude that the problem of spatial uncertainty is in fact an artefact of the fact that current industrial manipulators are designed to be position controlled. The work described in this thesis shows that assembly robots, when appropriately designed, controlled and programmed, can be the reliable and flexible devices they were always meant to be

    Method and apparatus for configuration control of redundant robots

    Get PDF
    A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space

    On-line Joint Limit Avoidance for Torque Controlled Robots by Joint Space Parametrization

    Full text link
    This paper proposes control laws ensuring the stabilization of a time-varying desired joint trajectory, as well as joint limit avoidance, in the case of fully-actuated manipulators. The key idea is to perform a parametrization of the feasible joint space in terms of exogenous states. It follows that the control of these states allows for joint limit avoidance. One of the main outcomes of this paper is that position terms in control laws are replaced by parametrized terms, where joint limits must be avoided. Stability and convergence of time-varying reference trajectories obtained with the proposed method are demonstrated to be in the sense of Lyapunov. The introduced control laws are verified by carrying out experiments on two degrees-of-freedom of the humanoid robot iCub.Comment: 8 pages, 4 figures. Submitted to the 2016 IEEE-RAS International Conference on Humanoid Robot

    Design and Control of an In-Parallel Pneumatically-Actuated Manipulator

    Get PDF
    The design and control of an in-parallel, pneumatically actuated manipulator is presented. In-parallel manipulators offer superior dynamic characteristics because of their high stiffness, low inertia, and potential for direct drive actuation. In this thesis, the three degree of freedom tripod manipulator is studied. The three degrees of freedom of the manipulator are exactly those that are required for force control perpendicular to a surface. These degrees of freedom are translations along the approach direction and rotations about the axes perpendicular to the approach direction. This body of research can be grouped into three parts. First the area of force control is examined with two purposes in mind, improving pneumatic force control, and understanding how force control has been traditionally implemented and the reasons for its limitations. Next, the improvement of the response of the mechanism and the implementation of different force control schemes are investigated. To improve the response of the system, shorter transmission lengths and an inner pressure feedback loop are added. Position control, force control, stiffness/compliance control, and impedance control, are all investigated, Lastly, a discussion of the advantages and possible uses of this mechanism is presented. The advantage of the parallel mechanism is the ability to regulate the force perpendicular to the surface. Thus, the mechanism can control the force perpendicular to the surface, while an arm attached to the mechanism can control the position of the end effector. This mechanism thus allows the hybrid position and force control problem to be decoupled. Obvious uses for applying a force perpendicular to a surface are tasks such as deburring or polishing. Another possible use could be peg insertion; a new design for peg insertion will be discussed. Lastly, this mechanism could be used as an ankle for a walking machine or a writ for a serial robot. The mechanism can adjust for unforeseen impacts and allow the system to be used in an unstructured environment

    Folding Assembly by Means of Dual-Arm Robotic Manipulation

    Full text link
    In this paper, we consider folding assembly as an assembly primitive suitable for dual-arm robotic assembly, that can be integrated in a higher level assembly strategy. The system composed by two pieces in contact is modelled as an articulated object, connected by a prismatic-revolute joint. Different grasping scenarios were considered in order to model the system, and a simple controller based on feedback linearisation is proposed, using force torque measurements to compute the contact point kinematics. The folding assembly controller has been experimentally tested with two sample parts, in order to showcase folding assembly as a viable assembly primitive.Comment: 7 pages, accepted for ICRA 201
    corecore