15,616 research outputs found

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Online real-time crowd behavior detection in video sequences

    Get PDF
    Automatically detecting events in crowded scenes is a challenging task in Computer Vision. A number of offline approaches have been proposed for solving the problem of crowd behavior detection, however the offline assumption limits their application in real-world video surveillance systems. In this paper, we propose an online and real-time method for detecting events in crowded video sequences. The proposed approach is based on the combination of visual feature extraction and image segmentation and it works without the need of a training phase. A quantitative experimental evaluation has been carried out on multiple publicly available video sequences, containing data from various crowd scenarios and different types of events, to demonstrate the effectiveness of the approach

    Automatic detection, tracking and counting of birds in marine video content

    Get PDF
    Robust automatic detection of moving objects in a marine context is a multi-faceted problem due to the complexity of the observed scene. The dynamic nature of the sea caused by waves, boat wakes, and weather conditions poses huge challenges for the development of a stable background model. Moreover, camera motion, reflections, lightning and illumination changes may contribute to false detections. Dynamic background subtraction (DBGS) is widely considered as a solution to tackle this issue in the scope of vessel detection for maritime traffic analysis. In this paper, the DBGS techniques suggested for ships are investigated and optimized for the monitoring and tracking of birds in marine video content. In addition to background subtraction, foreground candidates are filtered by a classifier based on their feature descriptors in order to remove non-bird objects. Different types of classifiers have been evaluated and results on a ground truth labeled dataset of challenging video fragments show similar levels of precision and recall of about 95% for the best performing classifier. The remaining foreground items are counted and birds are tracked along the video sequence using spatio-temporal motion prediction. This allows marine scientists to study the presence and behavior of birds

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore