190 research outputs found

    Preliminary Electrical Designs for CTEx and AFIT Satellite Ground Station

    Get PDF
    This thesis outlines the design of the electrical components for the space-based ChromoTomography Experiment (CTEx). CTEx is the next step in the development of high-speed chromotomography at the Air Force Institute of Technology. The electrical design of the system is challenging due to the large amount of data that is acquired by the imager and the limited resources that is inherent with space-based systems. Additional complication to the design is the need to know the angle of a spinning prism that is in the field of view very precisely for each image. Without this precise measurement any scene that is reconstructed from the data will be blurry and incomprehensible. This thesis also outlines how the control software for the CTEx space system should be created. The software ow is a balance of complex real time target pointing angles and simplicity to allow the system to function as quick as possible. This thesis also discusses the preliminary design for an AFIT satellite ground station based upon the design of the United States Air Force Academy\u27s ground station. The AFIT ground station will be capable of commanding and controlling satellites produced by USAFA and satellites produced by a burgeoning small satellite program at AFIT

    Airborne Advanced Reconfigurable Computer System (ARCS)

    Get PDF
    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking

    Dynamic HW/SW Partitioning: Configuration Scheduling and Design Space Exploration

    Get PDF
    Hardware/software partitioning is a process that occurs frequently in embedded system design. It is the procedure of determining whether a part of a system should be implemented in software or hardware. This dissertation is a study of hardware/software partitioning and the use of scheduling algorithms to improve the performance of dynamically reconfigurable computing devices. Reconfigurable computing devices are devices that are adaptable at the logic level to solve specific problems [Tes05]. One example of a reconfigurable computing device is the field programmable gate array (FPGA). The emergence of dynamically reconfigurable FPGAs made it possible to configure FPGAs at runtime. Most current approaches use a simple on demand configuration scheduling algorithm for the FPGA configurations. The on demand configuration scheduling algorithm reconfigures the FPGA at runtime, whenever a configuration is needed and is found not to be configured. The problem with this approach of dynamic reconfiguration is the reconfiguration time overhead, which is the time it takes to reconfigure the FPGA with a new configuration at runtime. Configuration caches and partial configuration have been proposed as possible solutions to this problem, but these techniques suffer from various limitations. The emergence of dynamically reconfigurable FPGAs also made it possible to perform dynamic hardware/software partitioning (DHSP), which is the procedure of determining at runtime whether a computation should be performed using its software or hardware implementation. The drawback of performing DHSP using configurations that are generated at runtime is that the profiling and the dynamic generation of configurations require profiling tool and synthesis tool access at runtime. This study proposes that configuration scheduling algorithms, which perform DHSP using statically generated configurations, can be developed to combine the advantages and reduce the major disadvantages of current approaches. A case study is used to compare and evaluate the tradeoffs between the currently existing approach for dynamic reconfiguration and the DHSP configuration scheduling algorithm based approach proposed in the study. A simulation model is developed to examine the performance of the various configuration scheduling algorithms. First, the difference in the execution time between the different approaches is analyzed. Afterwards, other important design criteria such as power consumption, energy consumption, area requirements and unit cost are analyzed and estimated. Also, business and marketing considerations such as time to market and development cost are considered. The study illustrates how different types of DHSP configuration scheduling algorithms can be implemented and how their performance can be evaluated using a variety of software applications. It is also shown how to evaluate when which of the approaches would be more advantageous by determining the tradeoffs that exist between them. Also the underlying factors that affect when which design alternative is more advantageous are determined and analyzed. The study shows that configuration scheduling algorithms, which perform DHSP using statically generated configurations, can be developed to combine the advantages and reduce some major disadvantages of current approaches. It is shown that there are situations where DHSP configuration scheduling algorithms can be more advantageous than the other approaches

    Design and Management of Manufacturing Systems

    Get PDF
    Although the design and management of manufacturing systems have been explored in the literature for many years now, they still remain topical problems in the current scientific research. The changing market trends, globalization, the constant pressure to reduce production costs, and technical and technological progress make it necessary to search for new manufacturing methods and ways of organizing them, and to modify manufacturing system design paradigms. This book presents current research in different areas connected with the design and management of manufacturing systems and covers such subject areas as: methods supporting the design of manufacturing systems, methods of improving maintenance processes in companies, the design and improvement of manufacturing processes, the control of production processes in modern manufacturing systems production methods and techniques used in modern manufacturing systems and environmental aspects of production and their impact on the design and management of manufacturing systems. The wide range of research findings reported in this book confirms that the design of manufacturing systems is a complex problem and that the achievement of goals set for modern manufacturing systems requires interdisciplinary knowledge and the simultaneous design of the product, process and system, as well as the knowledge of modern manufacturing and organizational methods and techniques
    • …
    corecore