741 research outputs found

    Online Visual Robot Tracking and Identification using Deep LSTM Networks

    Full text link
    Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online visionbased detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017. IROS RoboCup Best Paper Awar

    GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-resolved EEG Motor Imagery Signals

    Full text link
    Towards developing effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by electroencephalogram (EEG), is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning framework based on the graph convolutional neural networks (GCNs) was presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes was built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and group-wise predictions. It has achieved the highest averaged accuracy, 93.056% and 88.57% (PhysioNet Dataset), 96.24% and 80.89% (High Gamma Dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance was stably reproducible among repetitive experiments for cross-validation. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain motor imagery

    Re-Identification of Zebrafish using Metric Learning

    Get PDF

    Weed Recognition in Agriculture: A Mask R-CNN Approach

    Get PDF
    Recent interdisciplinary collaboration on deep learning has led to a growing interest in its application in the agriculture domain. Weed control and management are some of the crucial tasks in agriculture to maintain high crop productivity. The inception phase of weed control and management is to successfully recognize the weed plants, followed by providing a suitable management plan. Due to the complexities in agriculture images, such as similar colour and texture, we need to incorporate a deep neural network that uses pixel-wise grouping for identifying the plant species. In this thesis, we analysed the performance of one of the most popular deep neural networks aimed to solve the instance segmentation (pixel-wise analysis) problems: Mask R-CNN, for weed plant recognition (detection and classification) using field images and aerial images. We have used Mask R-CNN to recognize the crop plants and weed plants using the Crop/Weed Field Image Dataset (CWFID) for the field image study. However, the CWFID\u27s limitations are that it identifies all weed plants as a single class and all of the crop plants are from a single organic carrot field. We have created a synthetic dataset with 80 weed plant species to tackle this problem and tested it with Mask R-CNN to expand our study. Throughout this thesis, we predominantly focused on detecting one specific invasive weed type called Persicaria Perfoliata or Mile-A-Minute (MAM) for our aerial image study. In general, supervised model outcomes are slow to aerial images, primarily due to large image size and scarcity of well-annotated datasets, making it relatively harder to recognize the species from higher altitudes. We propose a three-level (leaves, trees, forest) hierarchy to recognize the species using Unmanned Aerial Vehicles(UAVs) to address this issue. To create a dataset that resembles weed clusters similar to MAM, we have used a localized style transfer technique to transfer the style from the available MAM images to a portion of the aerial images\u27 content using VGG-19 architecture. We have also generated another dataset at a relatively low altitude and tested it with Mask R-CNN and reached ~92% AP50 using these low-altitude resized images

    Topology Control, Routing Protocols and Performance Evaluation for Mobile Wireless Ad Hoc Networks

    Get PDF
    A mobile ad-hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the support of any established infrastructure or centralized administration. There are many potential applications based the techniques of MANETs, such as disaster rescue, personal area networking, wireless conference, military applications, etc. MANETs face a number of challenges for designing a scalable routing protocol due to their natural characteristics. Guaranteeing delivery and the capability to handle dynamic connectivity are the most important issues for routing protocols in MANETs. In this dissertation, we will propose four algorithms that address different aspects of routing problems in MANETs. Firstly, in position based routing protocols to design a scalable location management scheme is inherently difficult. Enhanced Scalable Location management Service (EnSLS) is proposed to improve the scalability of existing location management services, and a mathematical model is proposed to compare the performance of the classical location service, GLS, and our protocol, EnSLS. The analytical model shows that EnSLS has better scalability compared with that of GLS. Secondly, virtual backbone routing can reduce communication overhead and speedup the routing process compared with many existing on-demand routing protocols for routing detection. In many studies, Minimum Connected Dominating Set (MCDS) is used to approximate virtual backbones in a unit-disk graph. However finding a MCDS is an NP-hard problem. In the dissertation, we develop two new pure localized protocols for calculating the CDS. One emphasizes forming a small size initial near-optimal CDS via marking process, and the other uses an iterative synchronized method to avoid illegal simultaneously removal of dominating nodes. Our new protocols largely reduce the number of nodes in CDS compared with existing methods. We show the efficiency of our approach through both theoretical analysis and simulation experiments. Finally, using multiple redundant paths for routing is a promising solution. However, selecting an optimal path set is an NP hard problem. We propose the Genetic Fuzzy Multi-path Routing Protocol (GFMRP), which is a multi-path routing protocol based on fuzzy set theory and evolutionary computing
    • …
    corecore