1,104 research outputs found

    Implementing and Characterizing Real-time Broadband RFI Excision for the GMRT Wideband Backend

    Full text link
    The Giant Metrewave Radio Telescope (GMRT) is being upgraded to increase the receiver sensitivity. This makes the receiver more susceptible to man-made Radio Frequency Interference (RFI). To improve the receiver performance in presence of RFI, real-time RFI excision (filtering) is incorporated in the GMRT wideband backend (GWB). The RFI filtering system is implemented on FPGA and CPU-GPU platforms to detect and remove broadband and narrowband RFI. The RFI is detected using a threshold-based technique where the threshold is computed using Median Absolute Deviation (MAD) estimator. The filtering is carried out by replacing the RFI samples by either noise samples or constant value or threshold. This paper describes the status of the real-time broadband RFI excision system in the wideband receiver chain of the upgraded GMRT (uGMRT). The test methodology for carrying out various tests to demonstrate the performance of broadband RFI excision at the system level and on radio astronomical imaging experiments are also described.Comment: 7 pages, 7 figure

    The coexistence of cognitive radio and radio astronomy

    Get PDF
    An increase of the efficiency of spectrum usage requires the development of new communication techniques. Cognitive radio may be one of those new technique, which uses unoccupied frequency bands for communications. This will lead to more power in the bands and therefore an increasing level of Radio Frequency Interference (RFI), which would cause loss of operation particularly for passive users of the spectrum, such as radio astronomy. This paper will address this issue and will present calculations indicating that the impact of cognitive radio on radio astronomy observations is considerable. The signal levels resulting from cognitive radio systems indicate that spectral bands used for cognitive radio applications cannot be used for radio astronomical research

    Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT

    Full text link
    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.Comment: 24 pages, 15 figure

    Multi-Level Pre-Correlation RFI Flagging for Real-Time Implementation on UniBoard

    Get PDF
    Because of the denser active use of the spectrum, and because of radio telescopes higher sensitivity, radio frequency interference (RFI) mitigation has become a sensitive topic for current and future radio telescope designs. Even if quite sophisticated approaches have been proposed in the recent years, the majority of RFI mitigation operational procedures are based on post-correlation corrupted data flagging. Moreover, given the huge amount of data delivered by current and next generation radio telescopes, all these RFI detection procedures have to be at least automatic and, if possible, real-time. In this paper, the implementation of a real-time pre-correlation RFI detection and flagging procedure into generic high-performance computing platforms based on Field Programmable Gate Arrays (FPGA) is described, simulated and tested. One of these boards, UniBoard, developed under a Joint Research Activity in the RadioNet FP7 European programme is based on eight FPGAs interconnected by a high speed transceiver mesh. It provides up to ~4 TMACs with Altera Stratix IV FPGA and 160 Gbps data rate for the input data stream. Considering the high in-out data rate in the pre-correlation stages, only real-time and go-through detectors (i.e. no iterative processing) can be implemented. In this paper, a real-time and adaptive detection scheme is described. An ongoing case study has been set up with the Electronic Multi-Beam Radio Astronomy Concept (EMBRACE) radio telescope facility at Nan\c{c}ay Observatory. The objective is to evaluate the performances of this concept in term of hardware complexity, detection efficiency and additional RFI metadata rate cost. The UniBoard implementation scheme is described.Comment: 16 pages, 13 figure

    Performance assessment of time–frequency RFI mitigation techniques in microwave radiometry

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio–frequency interference (RFI) signals are a well-known threat for microwave radiometry (MWR) applications. In order to alleviate this problem, different approaches for RFI detection and mitigation are currently under development. Since RFI signals are man made, they tend to have their power more concentrated in the time–frequency (TF) space as compared to naturally emitted noise. The aim of this paper is to perform an assessment of different TF RFI mitigation techniques in terms of probability of detection, resolution loss (RL), and mitigation performance. In this assessment, six different kinds of RFI signals have been considered: a glitch, a burst of pulses, a wide-band chirp, a narrow-band chirp, a continuous wave, and a wide-band modulation. The results show that the best performance occurs when the transform basis has a similar shape as compared to the RFI signal. For the best case performance, the maximum residual RFI temperature is 14.8 K, and the worst RL is 8.4%. Moreover, the multiresolution Fourier transform technique appears as a good tradeoff solution among all other techniques since it can mitigate all RFI signals under evaluation with a maximum residual RFI temperature of 21 K, and a worst RL of 26.3%. Although the obtained results are still far from an acceptable bias Misplaced < 1 K for MWR applications, there is still work to do in a combined test using the information gathered simultaneously by all mitigation techniques, which could improve the overall performance of RFI mitigation.Peer ReviewedPostprint (author's final draft

    A turn-key Concept for active cancellation of Global Positioning System L3 Signal

    Get PDF
    We present a concept, developed at the National Astronomy and Ionosphere Center (NAIC) at Arecibo, Puerto Rico, for active suppression of Global Positioning System (GPS) signals in the 305 m dish radio receiver path prior to backend processing. The subsystem does not require an auxiliary antenna and is intended for easy integration with radio telescope systems with a goal of being a turnkey addition to virtually any facility. Working with actual sampled signal data, we have focused on the detection and cancellation of the GPS L3 signal at 1381.05 MHz which, during periodic test modes and particularly during system-wide tests, interfere with observations of objects in a range of redshifts that includes the Coma supercluster, for example. This signal can dynamically change modulation modes and our scheme is capable of detecting these changes and applying cancellation or sending a blanking signal, as appropriate. The subsystem can also be adapted to GPS L1 (1575.42 MHz), L2C (1227.6 MHz), and others. A follow-up is underway to develop a prototype to deploy and evaluate at NAIC.Comment: Presented at the RFI mitigation workshop, 29-31 March 2010, Groningen, the Netherlands. Accepted for publication by the Proceedings of Scienc
    corecore