6,512 research outputs found

    DPD-DFF: a dual phase distributed scheme with double fingerprint fusion for fast and accurate identification in large databases

    Get PDF
    Nowadays, many companies and institutions need fast and reliable identification systems that are able to deal with very large databases. Fingerprints are among the most used biometric traits for identification. In the current literature there are fingerprint matching algorithms that are focused on efficiency, whilst others are based on accuracy. In this paper we propose a flexible dual phase identification method, called DPD-DFF, that combines two fingers and two matchers within a hybrid fusion scheme to obtain both fast and accurate results. Different alternatives are designed to find a trade-off between runtime and accuracy that can be further tuned with a single parameter. The experiments show that DPD-DFF obtains very competitive results in comparison with the state-of-the-art score fusion techniques, especially when dealing with large databases or impostor fingerprints

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints

    Full text link
    Fusion performance in tokamaks hinges critically on the efficacy of the Edge Transport Barrier (ETB) at suppressing energy losses. The new concept of fingerprints is introduced to identify the instabilities that cause the transport losses in the ETB of many of today's experiments, from widely posited candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic simulations of experiments, find that each mode type produces characteristic ratios of transport in the various channels: density, heat and impurities. This, together with experimental observations of transport in some channel, or, of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple ELMy H-mode cases that are examined, these fingerprints indicate that MHD-like modes are apparently not the dominant agent of energy transport; rather, this role is played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG) modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET and ASDEX-U, and detailed simulations of two DIII-D ETBs also demonstrate and corroborate this

    A Multimodal Technique for an Embedded Fingerprint Recognizer in Mobile Payment Systems

    Get PDF
    The development and the diffusion of distributed systems, directly connected to recent communication technologies, move people towards the era of mobile and ubiquitous systems. Distributed systems make merchant-customer relationships closer and more flexible, using reliable e-commerce technologies. These systems and environments need many distributed access points, for the creation and management of secure identities and for the secure recognition of users. Traditionally, these access points can be made possible by a software system with a main central server. This work proposes the study and implementation of a multimodal technique, based on biometric information, for identity management and personal ubiquitous authentication. The multimodal technique uses both fingerprint micro features (minutiae) and fingerprint macro features (singularity points) for robust user authentication. To strengthen the security level of electronic payment systems, an embedded hardware prototype has been also created: acting as self-contained sensors, it performs the entire authentication process on the same device, so that all critical information (e.g. biometric data, account transactions and cryptographic keys), are managed and stored inside the sensor, without any data transmission. The sensor has been prototyped using the Celoxica RC203E board, achieving fast execution time, low working frequency, and good recognition performance

    Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening

    Get PDF
    Computational techniques such as structure-based virtual screening require carefully prepared 3D models of potential small-molecule ligands. Though powerful, existing commercial programs for virtual-library preparation have restrictive and/or expensive licenses. Freely available alternatives, though often effective, do not fully account for all possible ionization, tautomeric, and ring-conformational variants. We here present Gypsum-DL, a free, robust open-source program that addresses these challenges. As input, Gypsum-DL accepts virtual compound libraries in SMILES or flat SDF formats. For each molecule in the virtual library, it enumerates appropriate ionization, tautomeric, chiral, cis/trans isomeric, and ring-conformational forms. As output, Gypsum-DL produces an SDF file containing each molecular form, with 3D coordinates assigned. To demonstrate its utility, we processed 1558 molecules taken from the NCI Diversity Set VI and 56,608 molecules taken from a Distributed Drug Discovery (D3) combinatorial virtual library. We also used 4463 high-quality protein-ligand complexes from the PDBBind database to show that Gypsum-DL processing can improve virtual-screening pose prediction. Gypsum-DL is available free of charge under the terms of the Apache License, Version 2.0

    Survey on Data Leak Detection of Sensitive Data Exposure for Preserving Privacy

    Get PDF
    Now-a-days large amount of data leaks occur in various research institutions, organization and security firms. The data leakage occurs due to the improper protection to the data. Deliberately planned attacks, inadvertent leaks (e.g. forwarding confidential emails to unclassified email accounts), and human mistakes (e.g. assigning the wrong privilege) lead to most of the data-leak incidents .The common way is used to monitor the data that are stored in a organizational local network. However, this requirement is undesirable, as it may threaten the confidentiality of the sensitive information .For existing method we require plaintext sensitive data. A privacy preserving data-leak detection solution is proposed which can be outsourced and be deployed in a semi-honest detection environment. In this paper, fuzzy fingerprint technique is designed and implemented to enhance data privacy during data leak detection operation. The DLD provider computes fingerprints from network traffic and identifies potential leaks in them. The estimation result shows that this method can provide accurate detection
    • …
    corecore