178,286 research outputs found

    Service workload patterns for QoS-driven cloud resource management

    Get PDF
    Cloud service providers negotiate SLAs for customer services they offer based on the reliability of performance and availability of their lower-level platform infrastructure. While availability management is more mature, performance management is less reliable. In order to support a continuous approach that supports the initial static infrastructure configuration as well as dynamic reconfiguration and auto-scaling, an accurate and efficient solution is required. We propose a prediction technique that combines a workload pattern mining approach with a traditional collaborative filtering solution to meet the accuracy and efficiency requirements. Service workload patterns abstract common infrastructure workloads from monitoring logs and act as a part of a first-stage high-performant configuration mechanism before more complex traditional methods are considered. This enhances current reactive rule-based scalability approaches and basic prediction techniques by a hybrid prediction solution. Uncertainty and noise are additional challenges that emerge in multi-layered, often federated cloud architectures. We specifically add log smoothing combined with a fuzzy logic approach to make the prediction solution more robust in the context of these challenges

    A study of neighbour selection strategies for POI recommendation in LBSNs

    Get PDF
    Location-based Recommender Systems (LBRSs) are gaining importance with the proliferation of location-based services provided by mobile devices as well as user-generated content in social networks. Collaborative approaches for recommendation rely on the opinions of liked-minded people, so called neighbors, for prediction. Thus, an adequate selection of such neighbors becomes essential for achieving good prediction results. The aim of this work is to explore different strategies to select neighbors in the context of a collaborative filtering based recommender system for POI (places of interest) recommendations. Whereas standard methods are based on user similarity to delimit a neighborhood, in this work several strategies are proposed based on direct social relationships and geographical information extracted from Location-based Social Networks (LBSNs). The impact of the different strategies proposed has been evaluated and compared against the traditional collaborative filtering approach using a dataset from a popular network as Foursquare. In general terms, the proposed strategies for selecting neighbors based on the different elements available in a LBSN achieve better results than the traditional collaborative filtering approach. Our findings can be helpful both to researchers in the recommender systems area as well as to recommender systems developers in the context of LBSNs, since they can take into account our results to design and provide more effective services considering the huge amount of knowledge produced in LBSNs.Fil: Rios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin

    A collective intelligence approach for building student's trustworthiness profile in online learning

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Information and communication technologies have been widely adopted in most of educational institutions to support e-Learning through different learning methodologies such as computer supported collaborative learning, which has become one of the most influencing learning paradigms. In this context, e-Learning stakeholders, are increasingly demanding new requirements, among them, information security is considered as a critical factor involved in on-line collaborative processes. Information security determines the accurate development of learning activities, especially when a group of students carries out on-line assessment, which conducts to grades or certificates, in these cases, IS is an essential issue that has to be considered. To date, even most advances security technological solutions have drawbacks that impede the development of overall security e-Learning frameworks. For this reason, this paper suggests enhancing technological security models with functional approaches, namely, we propose a functional security model based on trustworthiness and collective intelligence. Both of these topics are closely related to on-line collaborative learning and on-line assessment models. Therefore, the main goal of this paper is to discover how security can be enhanced with trustworthiness in an on-line collaborative learning scenario through the study of the collective intelligence processes that occur on on-line assessment activities. To this end, a peer-to-peer public student's profile model, based on trustworthiness is proposed, and the main collective intelligence processes involved in the collaborative on-line assessments activities, are presented.Peer ReviewedPostprint (author's final draft

    A hierarchic approach for path planning in virtual reality.

    Get PDF
    This work considers path-planning processes for manipu- lation tasks such as assembly, maintenance or disassem- bly in a virtual reality (VR) context. The approach con- sists in providing a collaborative system associating a user immersed in VR and an automatic path planning process. It is based on semantic, topological and geometric representations of the environment and the planning process is split in two phases: coarse and fine planning. The automatic planner suggests a path to the user and guides him trough a haptic device. The user can escape from the proposed solution if he wants to explore a possible better way. In this case, the interactive system detects the users intention and computes in real-time a new path starting from the users guess. Experiments illustrate the different aspects of the approach: multi-representation of the en- vironment, path planning process, users intent prediction and control sharing
    corecore