302 research outputs found

    Real-time geophysical applications with Android GNSS raw measurements

    Get PDF
    The number of Android devices enabling access to raw GNSS (Global Navigation Satellite System) measurements is rapidly increasing, thanks to the dedicated Google APIs. In this study, the Xiaomi Mi8, the first GNSS dual-frequency smartphone embedded with the Broadcom BCM47755 GNSS chipset, was employed by leveraging the features of L5/E5a observations in addition to the traditional L1/E1 observations. The aim of this paper is to present two different smartphone applications in Geoscience, both based on the variometric approach and able to work in real time. In particular, tests using both VADASE (Variometric Approach for Displacement Analysis Stand-alone Engine) to retrieve the 3D velocity of a stand-alone receiver in real-time, and VARION (Variometric Approach for Real-Time Ionosphere Observations) algorithms, able to reconstruct real-time sTEC (slant total electron content) variations, were carried out. The results demonstrate the contribution that mass-market devices can offer to the geosciences. In detail, the noise level obtained with VADASE in a static scenario-few mm/s for the horizontal components and around 1 cm/s for the vertical component-underlines the possibility, confirmed from kinematic tests, of detecting fast movements such as periodic oscillations caused by earthquakes. VARION results indicate that the noise level can be brought back to that of geodetic receivers, making the Xiaomi Mi8 suitable for real-time ionosphere monitoring

    Differential GPS for small UAS using consumer-grade single-frequency receivers

    Get PDF
    Consumer-grade single-frequency GPS receivers with their known limitations are the predominant means of localization for small Unmanned Aircraft Systems (UAS). More intricate maneuvers such as automatic landings require a level of accuracy this class of receivers does not provide. As a contribution to improve the positioning accuracy without sacrificing the low-cost approach of this class of vehicles, a Local Area Augmentation System (LAAS) has been developed, based on consumer-grade single-frequency miniature GPS receivers both for the base station and airborne positioning. On the part of the airborne receiver, the conventional approach of carrier phase smoothing has been extended by incorporating Doppler measurements to propagate the position during carrier phase signal outages or in the event of cycle slips. Pseudoranges and the augmented carrier phase observations are merged by means of an indirect linear Kalman filter in the position domain. The characteristics of the error state allow for some simplifications that reduce the computing effort of the filter. To evaluate the system’s performance under dynamic conditions, raw GPS data have been collected on a ground based moving platform and processed with Simulink. The results show a significantly improved 3D position accuracy compared to the standalone receiver solution

    Ionospheric tomography and data assimilation

    Get PDF

    Characterization of On-Orbit GPS Transmit Antenna Patterns for Space Users

    Get PDF
    The GPS Antenna Characterization Experiment (GPS ACE) has made extensive observations of GPS L1 signals received at geosynchronous (GEO) altitude, with the objective of developing comprehensive models of the signal levels and signal performance in the GPS transmit antenna side lobes. The experiment was originally motivated by the fact that data on the characteristics and performance of the GPS signals available in GEO and other high Earth orbits was limited. The lack of knowledge of the power and accuracy of the side lobe signals on-orbit added risk to missions seeking to employ the side lobes to meet navigation requirements or improve performance. The GPS ACE Project lled that knowledge gap through a collaboration between The Aerospace Corporation and NASA Goddard Space Fight Center to collect and analyze observations from GPS side lobe transmissions to a satellite at GEO using a highly-sensitive GPS receiver installed at the ground station. The GPS ACE architecture has been in place collecting observations of the GPS constellation with extreme sensitivity for several years. This sensitivity combined with around-the-clock, all-in-view processing enabled full azimuthal coverage of the GPS transmit gain patterns over time to angles beyond 90 degrees off-boresight. Results discussed in this paper include the reconstructed transmit gain patterns, with comparisons to available pre-fight gain measurements from the GPS vehicle contractors. For GPS blocks with extensive ground measurements, the GPS ACE results show remarkable agreement with ground based measurements. For blocks without extensive ground measurements, the GPS ACE results provide the only existing assessments of the full transmit gain patterns. The paper also includes results of pseudorange deviation analysis to assess systematic errors associated with GPS side lobe signals

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Continued study of NAVSTAR/GPS for general aviation

    Get PDF
    A conceptual approach for examining the full potential of Global Positioning Systems (GPS) for the general aviation community is presented. Aspects of an experimental program to demonstrate these concepts are discussed. The report concludes with the observation that the true potential of GPS can only be exploited by utilization in concert with a data link. The capability afforded by the combination of position location and reporting stimulates the concept of GPS providing the auxiliary functions of collision avoidance, and approach and landing guidance. A series of general recommendations for future NASA and civil community efforts in order to continue to support GPS for general aviation are included

    CALIBRATION OF AN ULTRASONIC TRANSMISSIVE COMPUTED TOMOGRAPHY SYSTEM

    Get PDF
    Tato dizertace je zaměřena na medicínskou zobrazovací modalitu – ultrazvukovou počítačovou tomografii – a algoritmy zlepšující kvalitu zobrazení, zejména kalibraci USCT přístroje. USCT je novou modalitou kombinující ultrazvukový přenos signálů a principy tomografické rekonstrukce obrazů vyvíjených pro jiné tomografické systémy. V principu lze vytvořit kvantitativní 3D obrazové objemy s vysokým rozlišením a kontrastem. USCT je primárně určeno pro diagnózu rakoviny prsu. Autor spolupracoval na projektu Institutu Zpracování dat a Elektroniky, Forschungszentrum Karlsruhe, kde je USCT systém vyvíjen. Jeden ze zásadních problémů prototypu USCT v Karlsruhe byla absence kalibrace. Tisíce ultrazvukových měničů se liší v citlivosti, směrovosti a frekvenční odezvě. Tyto parametry jsou navíc proměnné v čase. Další a mnohem závažnější problém byl v pozičních odchylkách jednotlivých měničů. Všechny tyto aspekty mají vliv na konečnou kvalitu rekonstruovaných obrazů. Problém kalibrace si autor zvolil jako hlavní téma dizertace. Tato dizertace popisuje nové metody v oblastech rekonstrukce útlumových obrazů, kalibrace citlivosti měničů a zejména geometrická kalibrace pozic měničů. Tyto metody byly implementovány a otestovány na reálných datech pocházejících z prototypu USCT z Karlsruhe.This dissertation is centered on a medical imaging modality – the ultrasonic computed tomography (USCT) – and algorithms which improve the resulting image quality, namely the calibration of a USCT device. The USCT is a novel imaging modality which combines the phenomenon of ultrasound and image reconstruction principles developed for other tomographic systems. It is capable of producing quantitative 3D image volumes with high resolution and tissue contrast and is primarily aimed at breast cancer diagnosis. The author was involved in a joint research project at the Institute of Data Processing and Electronics, Forschungszentrum Karlsruhe (German National Research Center), where a USCT system is being developed. One of the main problems in the Karlsruhe USCT prototype was the absence of any calibration. The thousands of transducers used in the system have deviations in sensitivity, directivity, and frequency response. These parameters change over time as the transducers age. Also the mechanical positioning of the transducer elements is not precise. All these aspects greatly affect the overall quality of the reconstructed images. The problem of calibration of a USCT system was chosen as the main topic for this dissertation. The dissertation thesis presents novel methods in the area of reconstruction of attenuation images, sensitivity calibration, and mainly geometrical calibration. The methods were implemented and tested on real data generated by the Karlsruhe USCT device.

    Ionospheric Delays Compensation for On-The-Fly Integer Ambiguity Resolution in Long Baseline LEO Formations

    Get PDF
    This paper deals with the real-time onboard accurate relative positioning by Carrier-phase Differential GPS (CDGPS) of LEO formations with baselines of hundreds of kilometers. On long baselines, high accuracy can be achieved only using dual-frequency measurements and exploiting the integer nature of Double Difference (DD) carrier-phase ambiguities. However, large differential ionospheric delays and broadcast ephemeris errors complicate the integer resolution task. The present paper is concerned with analyzing possible approaches to DD ionospheric delays compensation in such applications. Two different strategies are implemented to deal with DD ionospheric delays. The first formulation models differential ionospheric delays as a function of the vertical total electron content above the receivers, whereas the second one is based on combining the DD measurements for removing ionospheric delays from the observation model. The effectiveness of the developed solutions is assessed by comparing the relative positioning accuracy that can be obtained on actual flight data from the Gravity Recovery and Climate Experiment mission. This is done using a recently developed, common relative positioning approach. Results show that ionospheric activity plays a major role in determining the relative positioning performance. Modeling the delays is advantageous for relative positioning in mild ionospheric conditions, but the solution without ionospheric delays becomes preferable as the ionosphere�s electron content increases

    3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons

    Full text link
    GNSS and LiDAR odometry are complementary as they provide absolute and relative positioning, respectively. Their integration in a loosely-coupled manner is straightforward but is challenged in urban canyons due to the GNSS signal reflections. Recent proposed 3D LiDAR-aided (3DLA) GNSS methods employ the point cloud map to identify the non-line-of-sight (NLOS) reception of GNSS signals. This facilitates the GNSS receiver to obtain improved urban positioning but not achieve a sub-meter level. GNSS real-time kinematics (RTK) uses carrier phase measurements to obtain decimeter-level positioning. In urban areas, the GNSS RTK is not only challenged by multipath and NLOS-affected measurement but also suffers from signal blockage by the building. The latter will impose a challenge in solving the ambiguity within the carrier phase measurements. In the other words, the model observability of the ambiguity resolution (AR) is greatly decreased. This paper proposes to generate virtual satellite (VS) measurements using the selected LiDAR landmarks from the accumulated 3D point cloud maps (PCM). These LiDAR-PCM-made VS measurements are tightly-coupled with GNSS pseudorange and carrier phase measurements. Thus, the VS measurements can provide complementary constraints, meaning providing low-elevation-angle measurements in the across-street directions. The implementation is done using factor graph optimization to solve an accurate float solution of the ambiguity before it is fed into LAMBDA. The effectiveness of the proposed method has been validated by the evaluation conducted on our recently open-sourced challenging dataset, UrbanNav. The result shows the fix rate of the proposed 3DLA GNSS RTK is about 30% while the conventional GNSS-RTK only achieves about 14%. In addition, the proposed method achieves sub-meter positioning accuracy in most of the data collected in challenging urban areas

    GNSS/Multi-Sensor Fusion Using Continuous-Time Factor Graph Optimization for Robust Localization

    Full text link
    Accurate and robust vehicle localization in highly urbanized areas is challenging. Sensors are often corrupted in those complicated and large-scale environments. This paper introduces GNSS-FGO, an online and global trajectory estimator that fuses GNSS observations alongside multiple sensor measurements for robust vehicle localization. In GNSS-FGO, we fuse asynchronous sensor measurements into the graph with a continuous-time trajectory representation using Gaussian process regression. This enables querying states at arbitrary timestamps so that sensor observations are fused without requiring strict state and measurement synchronization. Thus, the proposed method presents a generalized factor graph for multi-sensor fusion. To evaluate and study different GNSS fusion strategies, we fuse GNSS measurements in loose and tight coupling with a speed sensor, IMU, and lidar-odometry. We employed datasets from measurement campaigns in Aachen, Duesseldorf, and Cologne in experimental studies and presented comprehensive discussions on sensor observations, smoother types, and hyperparameter tuning. Our results show that the proposed approach enables robust trajectory estimation in dense urban areas, where the classic multi-sensor fusion method fails due to sensor degradation. In a test sequence containing a 17km route through Aachen, the proposed method results in a mean 2D positioning error of 0.19m for loosely coupled GNSS fusion and 0.48m while fusing raw GNSS observations with lidar odometry in tight coupling.Comment: Revision of arXiv:2211.0540
    corecore