6,405 research outputs found

    Statistical Multiplexing and Traffic Shaping Games for Network Slicing

    Full text link
    Next generation wireless architectures are expected to enable slices of shared wireless infrastructure which are customized to specific mobile operators/services. Given infrastructure costs and the stochastic nature of mobile services' spatial loads, it is highly desirable to achieve efficient statistical multiplexing amongst such slices. We study a simple dynamic resource sharing policy which allocates a 'share' of a pool of (distributed) resources to each slice-Share Constrained Proportionally Fair (SCPF). We give a characterization of SCPF's performance gains over static slicing and general processor sharing. We show that higher gains are obtained when a slice's spatial load is more 'imbalanced' than, and/or 'orthogonal' to, the aggregate network load, and that the overall gain across slices is positive. We then address the associated dimensioning problem. Under SCPF, traditional network dimensioning translates to a coupled share dimensioning problem, which characterizes the existence of a feasible share allocation given slices' expected loads and performance requirements. We provide a solution to robust share dimensioning for SCPF-based network slicing. Slices may wish to unilaterally manage their users' performance via admission control which maximizes their carried loads subject to performance requirements. We show this can be modeled as a 'traffic shaping' game with an achievable Nash equilibrium. Under high loads, the equilibrium is explicitly characterized, as are the gains in the carried load under SCPF vs. static slicing. Detailed simulations of a wireless infrastructure supporting multiple slices with heterogeneous mobile loads show the fidelity of our models and range of validity of our high load equilibrium analysis

    A Network Congestion control Protocol (NCP)

    Get PDF
    The transmission control protocol (TCP) which is the dominant congestion control protocol at the transport layer is proved to have many performance problems with the growth of the Internet. TCP for instance results in throughput degradation for high bandwidth delay product networks and is unfair for flows with high round trip delays. There have been many patches and modifications to TCP all of which inherit the problems of TCP in spite of some performance improve- ments. On the other hand there are clean-slate design approaches of the Internet. The eXplicit Congestion control Protocol (XCP) and the Rate Control Protocol (RCP) are the prominent clean slate congestion control protocols. Nonetheless, the XCP protocol is also proved to have its own performance problems some of which are its unfairness to long flows (flows with high round trip delay), and many per-packet computations at the router. As shown in this paper RCP also makes gross approximation to its important component that it may only give the performance reports shown in the literature for specific choices of its parameter values and traffic patterns. In this paper we present a new congestion control protocol called Network congestion Control Protocol (NCP). We show that NCP can outperform both TCP, XCP and RCP in terms of among other things fairness and file download times.unpublishe

    GPS queues with heterogeneous traffic classes

    Get PDF
    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for achieving service differentiation in integrated networks. We derive the asymptotic workload behavior of the light-tailed class for the situation where its GPS weight is larger than its traffic intensity. The GPS mechanism ensures that the workload is bounded above by that in an isolated system with the light-tailed class served in isolation at a constant rate equal to its GPS weight. We show that the workload distribution is in fact asymptotically equivalent to that in the isolated system, multiplied with a certain pre-factor, which accounts for the interaction with the heavy-tailed class. Specifically, the pre-factor represents the probability that the heavy-tailed class is backlogged long enough for the light-tailed class to reach overflow. The results provide crucial qualitative insight in the typical overflow scenario

    Sample-path large deviations for tandem and priority queues with Gaussian inputs

    Get PDF
    This paper considers Gaussian flows multiplexed in a queueing network. A single node being a useful but often incomplete setting, we examine more advanced models. We focus on a (two-node) tandem queue, fed by a large number of Gaussian inputs. With service rates and buffer sizes at both nodes scaled appropriately, Schilder's sample-path large-deviations theorem can be applied to calculate the asymptotics of the overflow probability of the second queue. More specifically, we derive a lower bound on the exponential decay rate of this overflow probability and present an explicit condition for the lower bound to match the exact decay rate. Examples show that this condition holds for a broad range of frequently used Gaussian inputs. The last part of the paper concentrates on a model for a single node, equipped with a priority scheduling policy. We show that the analysis of the tandem queue directly carries over to this priority queueing system.Comment: Published at http://dx.doi.org/10.1214/105051605000000133 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A generalized processor sharing approach to flow control in integrated services networks : the single server case

    Get PDF
    Caption title.Includes bibliographical references (p. 47-48).Research supported by a Vinton Hayes Fellowship.Abhay K. Parekh and Robert G. Gallager

    Expanded delta networks for very large parallel computers

    Get PDF
    In this paper we analyze a generalization of the traditional delta network, introduced by Patel [21], and dubbed Expanded Delta Network (EDN). These networks provide in general multiple paths that can be exploited to reduce contention in the network resulting in increased performance. The crossbar and traditional delta networks are limiting cases of this class of networks. However, the delta network does not provide the multiple paths that the more general expanded delta networks provide, and crossbars are to costly to use for large networks. The EDNs are analyzed with respect to their routing capabilities in the MIMD and SIMD models of computation.The concepts of capacity and clustering are also addressed. In massively parallel SIMD computers, it is the trend to put a larger number processors on a chip, but due to I/O constraints only a subset of the total number of processors may have access to the network. This is introduced as a Restricted Access Expanded Delta Network of which the MasPar MP-1 router network is an example
    corecore