30,445 research outputs found

    Data integration for XML based on semantic knowledge

    Get PDF
    Reconciling of knowledge from multiple heterogeneous data sources has been a major focus of database research for more than a decade.As a standard for exchanging business data on the WWW, XML should provide the ability of expressing data and semantics among them. Since most of application data are stored in relational databases due to its popularity and rich development experiences over it.Therefore, how to provide a proper mapping approach from relational model to XML model becomes the major research problem in the field of current information exchanging, sharing and integration..The model needs to be integrated and at the same time maintain the semantic knowledge among the data. The aim of this paper is to provide an overview for XML based data integration on semantic knowledge.At the end of the paper, we review some methodologies from existing literature

    Annotation of SBML Models Through Rule-Based Semantic Integration

    Get PDF
    *Motivation:* The creation of accurate quantitative Systems Biology Markup Language (SBML) models is a time-intensive, manual process often complicated by the many data sources and formats required to annotate even a small and well-scoped model. Ideally, the retrieval and integration of biological knowledge for model annotation should be performed quickly, precisely, and with a minimum of manual effort. Here, we present a method using off-the-shelf semantic web technology which enables this process: the heterogeneous data sources are first syntactically converted into ontologies; these are then aligned to a small domain ontology by applying a rule base. Integrating resources in this way can accommodate multiple formats with different semantics; it provides richly modelled biological knowledge suitable for annotation of SBML models.
*Results:* We demonstrate proof-of-principle for this rule-based mediation with two use cases for SBML model annotation. This was implemented with existing tools, decreasing development time and increasing reusability. This initial work establishes the feasibility of this approach as part of an automated SBML model annotation system.
*Availability:* Detailed information including download and mapping of the ontologies as well as integration results is available from "http://www.cisban.ac.uk/RBM":http://www.cisban.ac.uk/RB

    Enabling semantic queries across federated bioinformatics databases

    Get PDF
    MOTIVATION: Data integration promises to be one of the main catalysts in enabling new insights to be drawn from the wealth of biological data available publicly. However, the heterogeneity of the different data sources, both at the syntactic and the semantic level, still poses significant challenges for achieving interoperability among biological databases. RESULTS: We introduce an ontology-based federated approach for data integration. We applied this approach to three heterogeneous data stores that span different areas of biological knowledge: (i) Bgee, a gene expression relational database; (ii) Orthologous Matrix (OMA), a Hierarchical Data Format 5 orthology DS; and (iii) UniProtKB, a Resource Description Framework (RDF) store containing protein sequence and functional information. To enable federated queries across these sources, we first defined a new semantic model for gene expression called GenEx. We then show how the relational data in Bgee can be expressed as a virtual RDF graph, instantiating GenEx, through dedicated relational-to-RDF mappings. By applying these mappings, Bgee data are now accessible through a public SPARQL endpoint. Similarly, the materialized RDF data of OMA, expressed in terms of the Orthology ontology, is made available in a public SPARQL endpoint. We identified and formally described intersection points (i.e. virtual links) among the three data sources. These allow performing joint queries across the data stores. Finally, we lay the groundwork to enable nontechnical users to benefit from the integrated data, by providing a natural language template-based search interface

    BIM-to-BRICK: Using graph modeling for IoT/BMS and spatial semantic data interoperability within digital data models of buildings

    Full text link
    The holistic management of a building requires data from heterogeneous sources such as building management systems (BMS), Internet-of-Things (IoT) sensor networks, and building information models. Data interoperability is a key component to eliminate silos of information, and using semantic web technologies like the BRICK schema, an effort to standardize semantic descriptions of the physical, logical, and virtual assets in buildings and the relationships between them, is a suitable approach. However, current data integration processes can involve significant manual interventions. This paper presents a methodology to automatically collect, assemble, and integrate information from a building information model to a knowledge graph. The resulting application, called BIM-to-BRICK, is run on the SDE4 building located in Singapore. BIM-to-BRICK generated a bidirectional link between a BIM model of 932 instances and experimental data collected for 17 subjects into 458 BRICK objects and 1219 relationships in 17 seconds. The automation of this approach can be compared to traditional manual mapping of data types. This scientific innovation incentivizes the convergence of disparate data types and structures in built-environment applications
    corecore