511 research outputs found

    A systems biology understanding of protein constraints in the metabolism of budding yeasts

    Get PDF
    Fermentation technologies, such as bread making and production of alcoholic beverages, have been crucial for development of humanity throughout history. Saccharomyces cerevisiae provides a natural platform for this, due to its capability to transform sugars into ethanol. This, and other yeasts, are now used for production of pharmaceuticals, including insulin and artemisinic acid, flavors, fragrances, nutraceuticals, and fuel precursors. In this thesis, different systems biology methods were developed to study interactions between metabolism, enzymatic capabilities, and regulation of gene expression in budding yeasts. In paper I, a study of three different yeast species (S. cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus), exposed to multiple conditions, was carried out to understand their adaptation to environmental stress. Paper II revises the use of genome-scale metabolic models (GEMs) for the study and directed engineering of diverse yeast species. Additionally, 45 GEMs for different yeasts were collected, analyzed, and tested. In paper III, GECKO 2.0, a toolbox for integration of enzymatic constraints and proteomics data into GEMs, was developed and used for reconstruction of enzyme-constrained models (ecGEMs) for three yeast species and model organisms. Proteomics data and ecGEMs were used to further characterize the impact of environmental stress over metabolism of budding yeasts. On paper IV, gene engineering targets for increased accumulation of heme in S. cerevisiae cells were predicted with an ecGEM. Predictions were experimentally validated, yielding a 70-fold increase in intracellular heme. The prediction method was systematized and applied to the production of 102 chemicals in S. cerevisiae (Paper V). Results highlighted general principles for systems metabolic engineering and enabled understanding of the role of protein limitations in bio-based chemical production. Paper VI presents a hybrid model integrating an enzyme-constrained metabolic network, coupled to a gene regulatory model of nutrient-sensing mechanisms in S. cerevisiae. This model improves prediction of protein expression patterns while providing a rational connection between metabolism and the use of nutrients from the environment.This thesis demonstrates that integration of multiple systems biology approaches is valuable for understanding the connection of cell physiology at different levels, and provides tools for directed engineering of cells for the benefit of society

    Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data

    Full text link
    Despite the remarkable advances in cancer diagnosis, treatment, and management that have occurred over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires patient-specific information integrated into an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous, yet practical, mathematical theory of tumor initiation, development, invasion, and response to therapy. In this review, we begin by providing an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on ``big data" and artificial intelligence. Next, we present illustrative examples of mathematical models manifesting their utility and discussing the limitations of stand-alone mechanistic and data-driven models. We further discuss the potential of mechanistic models for not only predicting, but also optimizing response to therapy on a patient-specific basis. We then discuss current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models

    Ανάλυση προωτεομικών δεδομένων απο φασματομετρία μάζας και ενσωμάτωσή τους με άλλα κλινικά και μοριακά δεδομένα σε κλινικά δείγματα και καρκινικές σειρές

    Get PDF
    Οι μοριακοί υπότυποι μιας ασθένειας συχνά συσχετίζονται με διαφορές ως προς την επιβίωση ή πρόοδο της νόσου και άλλοτε ως προς την απόκριση σε συγκεκριμένη θεραπεία. Την τελευταία δεκαετία, μελέτες μοριακής ταξινόμησης του ουροθηλιακού καρκίνου εστιάζουν κυρίως στον διηθητικό τύπο της ασθένειας (~20% των ασθένων στην αρχική διάγνωση) ο οποίος χαρακτηρίζεται από υψηλό κίνδυνο για μετάσταση και χαμηλά ποσοστά πενταετούς επιβίωσης. Οι παραπάνω μελέτες επέτρεψαν την ταυτοποιήση πολλαπλών γενομικών και μεταγραφικών υποτύπων οι οποίοι διαφέρουν ριζικά ως προς το μοριακό τους προφίλ, σχηματίζοντας δύο μεγάλες κατηγορίες: τους basal και τους luminal όγκους. Οι πρώτοι φαίνεται να σχετίζονται με πιο επιθετικούς καρκίνους εμπερικλείοντας όμως ένα σημαντικό ποσοστό ασθενών που ανταποκρίνονται στο βασικό χημειοθεραπευτικό σχήμα. Οι δέυτεροι (luminal) αρχικά προσδιορίστηκαν ως λιγότερο επιθετικοί, επόμενες μελέτες όμως αποκάλυψαν την σημαντική μοριακή ετερογένεια που τους χαρακτηρίζει και που αντανακλάται σε κλινικές παραμέτρους. Σήμερα, πιστέυεται ότι ο διηθητικός καρκίνος της ουροδόχου κύστης ταξινομείται σε 6 βασικούς υποτύπους, αλλά τα δεδομένα που υπάρχουν για να υποστηρίξουν την ένταξη των υποτύπων στην κλινική πράξη είναι ατελή και δεν συμφωνούν μεταξύ τους. Από την άλλη, ο μη διηθητικός τύπος της ασθενεις (~80% των περιπτώσεων στην αρχική διάγνωση) χαρακτηρίζεται από υψηλά ποσοστά υποτροπής και προόδου σε ανώτερο στάδιο καθώς και από σημαντικό δημόσιο οικονομικό κόστος εξαιτίας της αυξημένης συχνότητας παρακολούθησης που απαιτεί. Το μοριακό προφίλ του μη-διηθητικού καρκίνου έχει μελετηθεί σημαντικά λιγότερο από αυτό του διηθητικού, και μέχρι σήμερα υπάρχουν δύο μελέτες που επιχειρούν την ταξινόμησή του σε μοριακούς υποτύπους: η πρώτη στη βάση του μεταγραφώματος, η δέυτερη στη βάση της διακύμνασης αριθμού αντιγράφων. Το πρωτεομικό προφίλ όμως, τόσο του διηθητικού όσο και του μη-διηθητικού καρκίνου της ουροδόχου κύστης, μέχρι και σήμερα έχει μελετηθεί υποτυπωδώς. Σκοπός της παρούσας μελέτης είναι η διερεύνηση της ύπαρξης πρωτεομικών υποτύπων του μη διηθητικού ουροθηλιακού καρκίνου, ο μοριακός χαρακτηρισμός τους, η σχέση τους με προηγούμενα συστήματα ταξινόμησης, καθώς και η ταυτοποίηση απορυθμισμένων πρωτεϊνών και μονοπατιών με δυνητική προγνωστική αξία. Για την εξυπηρέτηση του παραπάνω σκοπού, 117 δείγματα καρκινικού ιστού από ασθενείς που πρωτοδιαγνώσθηκαν με ουροθηλιακό καρκίνο (98 μη-διηθητικό, 19 διηθητικό) συλλέχθησαν και το ολικό πρωτέομά τους απομονώθηκε και αρχικά ποσοτικοποιήθηκε με τη μέθοδο Bradford. Κατόπιν διάσπασης με θρυψίνη, τα πεπτίδια διαχωρίστηκαν σε χρωματογραφική στήλη συνδεδεμένη με φασματογράφο μάζας τύπου Orbitrap. Οι φασματικές πληροφορίες για τα πεπτίδια αναλύθηκαν με το πρόγραμμα Proteome Discoverer θέτοντας FDR (False Discovery Rate) <0.01 και αντιστοιχήθηκαν σε πρωτεινικές ταυτότητες. Η πρωτεϊνική ποσοτικοποίηση έγινε με τη χρήση των τριών πιο άφθονων και μοναδικών πεπτιδίων ανά πρωτεΐνη, ενώ κατόπιν επεξεργασίας τα πρωτεομικά δεδομένα υποβλήθηκαν σε μια σειρά από υπολογιστικές αναλύσεις: μη επιτηρούμενη k-means συσταδοποίηση, ανάλυση κύριων συνιστωσών, ανάλυση για στατιστική σημαντικόντητα πρωτεϊνών, πρωτεϊνικών μονοπατιών, βιολογικών λειτουργιών και γονιδιακής έκφρασης καθώς και στην μοντελοιποίηση ενός μοριακού ταξινομητή Radnom Forest. Μέγιστη σταθερότητα συσταδοποίησης επιτεύχηκε για κ = 3 ομάδες, υποδηλώνοντας την ύπαρξη τριών πρωτεομικών υποτύπων στα δεδομένα. Η ομάδα 1 ήταν η μικρότερη σε μέγεθος (17/98), περιείχε κυρίως καρκίνους υψηλού σταδίου, αλλοίωσης και ρίσκου και παρουσίασε ένα μοριακό φαινότυπο ανοσοδιήθησης με υψηλά επιπέδα των μεταγραφικών παραγόντων STAT1, STAT3 και SND1, καθώς και πρωτεϊνων της αντιγονοπαρουσίασης, υποδηλώνοντας ενεργή ανταλλαγή πληροφοριών μεταξύ του ανοσοποιητικού και των καρκινικών κυττάρων. Παράλληλα, χαρακτηρίζονταν απο υψηλότερες ποσότητες πρωτεϊνών που συμμετέχουν στο κυτταρικό κύκλο, και στη μετάδοση στρεσογόνων σημάτων (αντίδραση μη αναδιπλωμένης πρωτεϊνης και επιδιόρθωση βλαβών του DNA). Η όμαδα 2 συγκέντρωσε ασθενείς με ποικίλα κλινικά χαρακτηριστικά που όμως έφεραν κοινώς, αυξημένες ποσότητες εξωκυττάριων πρωτεϊνών (στρώματος), και χαμηλά επιθηλιακά σήματα. Οι ασθενείς στην ομάδα 3 παρουσίασαν έναν πιο διαφοροποιημένο μοριακό φαινότυπο με υψηλότερα επίπεδα (UPKs και KRT20 κάθως και CDH1) που συμβαδίζει με τα κλινικά χαρακτηριστικά τους αφού οι περισσότεροι διαγιγνώσθηκαν με καρκίνους χαμηλού σταδίου και κινδύνου. Η ανάλυση για ενεργοποιημένα πρωτεϊνικά μονοπάτια έδειξε ότι οι ασθενείς της ομάδας 1 έιχαν ενεργή σηματοδότηση για βιοσυνθετικές διεργασίες, για ιντερφερόνη-γ, και αυξημένη δραστηριότητα των μεταγραφικών παραγόντων MYC και E2F, που ελέγχουν θετικά τον κυτταρικό κύκλο. Από την άλλη οι ασθνενείς της ομάδας 3 σχετίστηκαν με ενεργοποίηση μεταβολικών μονοπατιών όπως αυτό της αποτοξίνωσης μεσολαβούμενο από γλουταθειόνη καθώς και της γλυκογονόλυσης – γλυκόλυσης, αλλά και της απόπτωσης. Συγκρίνοντας το πρωτεομικό προφιλ των ασθένων με μη-διηθητικό καρκίνο με ασθενέις που είχαν διηθητικό καρκίνο χρησιμοποιώντας ανάλυση κύριων συνιστωσών, αποκαλύφθηκε κοντινή σχέση της ομάδας 1 με ασθενείς που έφεραν διηθητικό ουροθηλιακό καρκίνο και αντίστροφα, μακρινή σχέση της ομάδας 3 με τους τελευταίους. Η ομάδα 2 εμφάνισε μεγάλη διασπορά επικαλύπτοντας περιοχές των προηγούμενων δύο ομάδων. Για την επικύρωση των πρωτεομικών αποτελεσμάτων, δεδομένα από μεταγραφικές έρευνες (UROMOL και LUND) αναλύθηκαν αναδρομικά. Στην UROMOL έρευνα επίσης ταυτοποιήθηκαν 3 υπότυποι ο ένας εκ των οποίων συγκέντρωσε τους περισσότερους ασθενείς με πρόδοο σε ανώτερο στάδιο (κακής πρόγνωσης υπότυπος). Συγκριτική ανάλυση μεταξύ των τριών πρωτεομικών ομάδων και των τριών υποτύπων της UROMOL έρευνας με το στατιστικό εργαλείο GSEA, έδειξε στατιστικώς σημαντικές φαινοτυπικές ομοιότητες μεταξύ της πρωτεομικής ομάδας 1 και του υποτύπου «κακής» πρόγνωσης της UROMOL καθώς και μεταξύ της πρωτεομικής ομάδας 3 και του υποτύπου «καλής πρόγνωσης». Χρησιμοποιώντας έναν μη επιτηρούμενο μοριακό ταξινομητή Random Forest, οι υψηλού κινδύνου και χαμηλού κινδύνου φαινότυποι των πρωτεομικών ομάδων 1 και 3, επιβεβαιώθηκαν ύστερα από την ταξινόμηση των ασθενών στους υποτύπους «κακής» και «καλής» πρόγνωσης αντίστοιχα, της UROMOL έρευνας. Στατιστικώς σημαντικες πρωτεΐνες που ξεχωρίζουν αυτές τις δυο ακραίες πρωτεομικές ομάδες αλλά και ταυτόχρονα τον διηθητικό από τον μη διηθητικό καρκίνο βρέθηκαν να διαφέρουν σημαντικά και στο επίπεδο του μεταγραφώματος μεταξύ των ομάδων «κακής» και «καλής» πρόγνωσης σε δύο ανεξάρτητες έρευνες (UROMOL και LUND). Τα παραπάνω μόρια συμμετέχουν σε βιολογικές λειτουργίες-κλειδιά για την ανάπτυξη του μη-διηθητικού καρκίνου, όπως στην επαγωγή αποκρίσεων πρωτεϊνικής σταθερότητας, στη σηματοδότηση κυτοκινών και ιντερφερονών, στην αντιγονοπαρουσίαση, στην επεξεργασία πρώιμων mRNAs, σε μετα-μεταφραστικές τροποποιήσεις αλλά και σε μονοπάτια κυτταρικής αύξησης. Συνολικά, η παρούσα μελέτη ταυτοποιεί τρεις πρωτεομικούς υποτύπους του μη διηθητικού καρκίνου και ακολουθώντας μια σύγκριτική ανάλυση με δύο ανεξάρτητες μεταγραφικές έρευνες, παρέχει ομάδες μορίων που μπορεί να οδηγούν τη πρόοδο του καρκίνου και που χρειάζονται επιπλέον επικύρωση στη κλινική πράξη.DNA/RNA-based classification of Bladder Cancer (BC) supports the existence of multiple molecular subtypes, while investigations at the protein level are scarce. The purpose of this study was to investigate if Non-Muscle Invasive Bladder Cancer (NMIBC) can be stratified to biologically meaningful proteomic groups, to establish associations between the proteomics subtypes and previous transcriptomics classification systems and to characterize the continuum of transcriptomics alterations observed in the different stages of the disease. Subsequently, tissue specimens from 117 patients at primary diagnosis (98 with NMIBC and 19 with MIBC), were processed for high resolution LC-MS/MS analysis. Protein quantification was conducted by utilizing the mean abundance of the top three most abundant unique peptides per protein. The proteomics output was subjected to unsupervised consensus clustering, principal component analysis (PCA), and investigation of subtype-specific features, pathways, and genesets, as well as for the construction and validation of a Random Forest based classifier. NMIBC patients were optimally stratified to 3 proteomic subtypes (classes), differing at size, clinico-pathological and molecular backgrounds: Class 1 (mostly high stage/grade/risk samples) was the smallest in size (17/98) and expressed an immune/inflammatory phenotype, along with features involved in cell proliferation, unfolded protein response and DNA damage response, whereas class 2 (mixed stage/grade/risk composition) presented with an infiltrated/mesenchymal profile. Class 3 was rich in luminal/differentiation markers, in line with its pathological composition (mostly low stage/grade/risk samples). PCA revealed a close proximity of class 1 and conversely, remoteness of class 3 to the proteome of MIBC. Samples from class 2 were distributed in a wider fashion at the rotated space. Comparative analysis with GSEA between the three proteomic classes and the three UROMOL subtypes indicated statistically significant associations between the proteomics class 1 and UROMOL subtype 2 (subtype with a bad prognosis) and also between the proteomics class 3 and UROMOL subtype 1 (subtype with the best prognosis). Utilizing a Random Forest based classifier, the predicted high- and low-risk phenotypes for the proteomic class 1 and class 3, were further supported by their classification into the “progressed” and “non-progressed” subtypes of the UROMOL study, respectively. Statistically significant proteins distinguishing these two extreme classes (1 and 3) and also MIBC from NMIBC samples were found to consistently differ at the mRNA levels between NMIBC “Progressors” and “Non-Progressors” groups of the UROMOL and LUND cohorts. Functional assessment of the observed molecular de-regulations suggested severe pathway alterations at unfolded protein response, cytokine and inferferone-γ signaling, antigen presentation, mRNA processing, post translational modifications and in cell growth/division. Collectively, this study identifies three proteomic NMIBC subtypes and following a cross-omics analysis using transcriptomic data from two independent cohorts, shortlists molecular features potentially driving non-invasive carcinogenesis, meriting further validation in clinical trials

    Network-Based Biomarker Discovery : Development of Prognostic Biomarkers for Personalized Medicine by Integrating Data and Prior Knowledge

    Get PDF
    Advances in genome science and technology offer a deeper understanding of biology while at the same time improving the practice of medicine. The expression profiling of some diseases, such as cancer, allows for identifying marker genes, which could be able to diagnose a disease or predict future disease outcomes. Marker genes (biomarkers) are selected by scoring how well their expression levels can discriminate between different classes of disease or between groups of patients with different clinical outcome (e.g. therapy response, survival time, etc.). A current challenge is to identify new markers that are directly related to the underlying disease mechanism

    Network-driven strategies to integrate and exploit biomedical data

    Get PDF
    [eng] In the quest for understanding complex biological systems, the scientific community has been delving into protein, chemical and disease biology, populating biomedical databases with a wealth of data and knowledge. Currently, the field of biomedicine has entered a Big Data era, in which computational-driven research can largely benefit from existing knowledge to better understand and characterize biological and chemical entities. And yet, the heterogeneity and complexity of biomedical data trigger the need for a proper integration and representation of this knowledge, so that it can be effectively and efficiently exploited. In this thesis, we aim at developing new strategies to leverage the current biomedical knowledge, so that meaningful information can be extracted and fused into downstream applications. To this goal, we have capitalized on network analysis algorithms to integrate and exploit biomedical data in a wide variety of scenarios, providing a better understanding of pharmacoomics experiments while helping accelerate the drug discovery process. More specifically, we have (i) devised an approach to identify functional gene sets associated with drug response mechanisms of action, (ii) created a resource of biomedical descriptors able to anticipate cellular drug response and identify new drug repurposing opportunities, (iii) designed a tool to annotate biomedical support for a given set of experimental observations, and (iv) reviewed different chemical and biological descriptors relevant for drug discovery, illustrating how they can be used to provide solutions to current challenges in biomedicine.[cat] En la cerca d’una millor comprensió dels sistemes biològics complexos, la comunitat científica ha estat aprofundint en la biologia de les proteïnes, fàrmacs i malalties, poblant les bases de dades biomèdiques amb un gran volum de dades i coneixement. En l’actualitat, el camp de la biomedicina es troba en una era de “dades massives” (Big Data), on la investigació duta a terme per ordinadors se’n pot beneficiar per entendre i caracteritzar millor les entitats químiques i biològiques. No obstant, la heterogeneïtat i complexitat de les dades biomèdiques requereix que aquestes s’integrin i es representin d’una manera idònia, permetent així explotar aquesta informació d’una manera efectiva i eficient. L’objectiu d’aquesta tesis doctoral és desenvolupar noves estratègies que permetin explotar el coneixement biomèdic actual i així extreure informació rellevant per aplicacions biomèdiques futures. Per aquesta finalitat, em fet servir algoritmes de xarxes per tal d’integrar i explotar el coneixement biomèdic en diferents tasques, proporcionant un millor enteniment dels experiments farmacoòmics per tal d’ajudar accelerar el procés de descobriment de nous fàrmacs. Com a resultat, en aquesta tesi hem (i) dissenyat una estratègia per identificar grups funcionals de gens associats a la resposta de línies cel·lulars als fàrmacs, (ii) creat una col·lecció de descriptors biomèdics capaços, entre altres coses, d’anticipar com les cèl·lules responen als fàrmacs o trobar nous usos per fàrmacs existents, (iii) desenvolupat una eina per descobrir quins contextos biològics corresponen a una associació biològica observada experimentalment i, finalment, (iv) hem explorat diferents descriptors químics i biològics rellevants pel procés de descobriment de nous fàrmacs, mostrant com aquests poden ser utilitzats per trobar solucions a reptes actuals dins el camp de la biomedicina
    corecore