45,095 research outputs found

    Spatial Identification Methods and Systems for RFID Tags

    Get PDF
    Disertační práce je zaměřena na metody a systémy pro měření vzdálenosti a lokalizaci RFID tagů pracujících v pásmu UHF. Úvod je věnován popisu současného stavu vědeckého poznání v oblasti RFID prostorové identifikace a stručnému shrnutí problematiky modelování a návrhu prototypů těchto systémů. Po specifikaci cílů disertace pokračuje práce popisem teorie modelování degenerovaného kanálu pro RFID komunikaci. Detailně jsou rozebrány metody měření vzdálenosti a odhadu směru příchodu signálu založené na zpracování fázové informace. Pro účely lokalizace je navrženo několik scénářů rozmístění antén. Modely degenerovaného kanálu jsou simulovány v systému MATLAB. Významná část této práce je věnována konceptu softwarově definovaného rádia (SDR) a specifikům jeho adaptace na UHF RFID, která využití běžných SDR systémů značně omezují. Diskutována je zejména problematika průniku nosné vysílače do přijímací cesty a požadavky na signál lokálního oscilátoru používaný pro směšování. Prezentovány jsou tři vyvinuté prototypy: experimentální dotazovač EXIN-1, měřicí systém založený na platformě Ettus USRP a anténní přepínací matice pro emulaci SIMO systému. Závěrečná část je zaměřena na testování a zhodnocení popisovaných lokalizačních technik, založených na měření komplexní přenosové funkce RFID kanálu. Popisuje úzkopásmové/širokopásmové měření vzdálenosti a metody odhadu směru signálu. Oba navržené scénáře rozmístění antén jsou v závěru ověřeny lokalizačním měřením v reálných podmínkách.The doctoral thesis is focused on methods and systems for ranging and localization of RFID tags operating in the UHF band. It begins with a description of the state of the art in the field of RFID positioning with short extension to the area of modeling and prototyping of such systems. After a brief specification of dissertation objectives, the thesis overviews the theory of degenerate channel modeling for RFID communication. Details are given about phase-based ranging and direction of arrival finding methods. Several antenna placement scenarios are proposed for localization purposes. The degenerate channel models are simulated in MATLAB. A significant part of the thesis is devoted to software defined radio (SDR) concept and its adaptation for UHF RFID operation, as it has its specialties which make the usage of standard SDR test equipment very disputable. Transmit carrier leakage into receiver path and requirements on local oscillator signals for mixing are discussed. The development of three experimental prototypes is also presented there: experimental interrogator EXIN-1, measurement system based on Ettus USRP platform, and antenna switching matrix for an emulation of SIMO system. The final part is focused on testing and evaluation of described positioning techniques based on complex backscatter channel transfer function measurement. Both narrowband/wideband ranging and direction of arrival methods are validated. Finally, both proposed antenna placement scenarios are evaluated with real-world measurements.

    inTrack: High Precision Tracking of Mobile Sensor Nodes

    Get PDF
    Radio-interferometric ranging is a novel technique that allows for fine-grained node localization in networks of inexpensive COTS nodes. In this paper, we show that the approach can also be applied to precision tracking of mobile sensor nodes. We introduce inTrack, a cooperative tracking system based on radio-interferometry that features high accuracy, long range and low-power operation. The system utilizes a set of nodes placed at known locations to track a mobile sensor. We analyze how target speed and measurement errors affect the accuracy of the computed locations. To demonstrate the feasibility of our approach, we describe our prototype implementation using Berkeley motes. We evaluate the system using data from both simulations and field tests

    Multi-Channel Two-way Time of Flight Sensor Network Ranging

    Get PDF
    Two-way time of flight (ToF) ranging is one of the most interesting approaches for localization in wireless sensor networking since previous ToF ranging approaches using commercial off-the-shelf (COTS) devices have achieved good accuracy. The COTS-based approaches were, however, evaluated only in line-of-sight conditions. In this paper, we extend ToF ranging using multiple IEEE 802.15.4 channels. Our results demonstrate that with multiple channels we can achieve good accuracy even in non line-of-sight conditions. Furthermore, our measurements suggest that the variance between different channels serves as a good estimate of the accuracy of the measurements, which can be valuable information for applications that require localization information

    Use of Navigation Beacons to Support Lunar Vehicle Operations

    Get PDF
    To support a wide variety of lunar missions in a condensed regime, solutions are needed outside of the use of Earth-based orbit determination. This research presents an alternate approach to in-situ navigation through the use of beacons, similar to that used on Earth as well as under technology development efforts. An overview of the current state of navigation aids included as well as discussion of the Lunar Node 1 payload being built at NASA/Marshall Space Flight Center. Expected navigation results of this beacon payload for planned operation from the lunar surface are provided. Applications of navigation beacons to multiple stages of the proposed human lunar landing architecture are given, with initial analysis showing performance gains from the use of this technology. This work provides a starting point for continued analysis and design, laying out the foundation of how navigation beacons can be incorporated into the architecture to enable continued analysis, design, and future expanded capability

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected
    corecore