8,251 research outputs found

    Incorporating interactive 3-dimensional graphics in astronomy research papers

    Full text link
    Most research data collections created or used by astronomers are intrinsically multi-dimensional. In contrast, all visual representations of data presented within research papers are exclusively 2-dimensional. We present a resolution of this dichotomy that uses a novel technique for embedding 3-dimensional (3-d) visualisations of astronomy data sets in electronic-format research papers. Our technique uses the latest Adobe Portable Document Format extensions together with a new version of the S2PLOT programming library. The 3-d models can be easily rotated and explored by the reader and, in some cases, modified. We demonstrate example applications of this technique including: 3-d figures exhibiting subtle structure in redshift catalogues, colour-magnitude diagrams and halo merger trees; 3-d isosurface and volume renderings of cosmological simulations; and 3-d models of instructional diagrams and instrument designs.Comment: 18 pages, 7 figures, submitted to New Astronomy. For paper with 3-dimensional embedded figures, see http://astronomy.swin.edu.au/s2plot/3dpd

    Incorporating interactive 3-dimensional graphics in astronomy research papers

    Full text link
    Most research data collections created or used by astronomers are intrinsically multi-dimensional. In contrast, all visual representations of data presented within research papers are exclusively 2-dimensional. We present a resolution of this dichotomy that uses a novel technique for embedding 3-dimensional (3-d) visualisations of astronomy data sets in electronic-format research papers. Our technique uses the latest Adobe Portable Document Format extensions together with a new version of the S2PLOT programming library. The 3-d models can be easily rotated and explored by the reader and, in some cases, modified. We demonstrate example applications of this technique including: 3-d figures exhibiting subtle structure in redshift catalogues, colour-magnitude diagrams and halo merger trees; 3-d isosurface and volume renderings of cosmological simulations; and 3-d models of instructional diagrams and instrument designs.Comment: 18 pages, 7 figures, submitted to New Astronomy. For paper with 3-dimensional embedded figures, see http://astronomy.swin.edu.au/s2plot/3dpd

    The Inner Galaxy resolved at IJK using DENIS data

    Full text link
    We present the analysis of three colour optical/near-infrared images, in IJK, taken for the DENIS project. The region considered covers 17.4 square deg and lies within |l|<5 deg, |b|<1.5 deg. The adopted methods for deriving photometry and astrometry in these crowded images, together with an analysis of the deficiencies nevertheless remaining, are presented. The numbers of objects extracted in I,J and K are 748000, 851000 and 659000 respectively, to magnitude limits of 17,15 and 13. 80% completeness levels typically fall at magnitudes 16, 13 and 10 respectively, fainter by about 2 magnitudes than the usual DENIS limits due to the crowded nature of these fields. A simple model to describe the disk contribution to the number counts is constructed, and parameters for the dust layer derived. We find that a formal fit of parameters for the dust plane, from these data in limited directions, gives a scalelength and scaleheight of 3.4+-1.0 kpc and 40+-5 pc respectively, and a solar position 14.0+-2.5 pc below the plane. This latter value is likely to be affected by localised dust asymmetries. We convolve a detailed model of the systematic and random errors in the photometry with a simple model of the Galactic disk and dust distribution, to simulate expected colour-magnitude diagrams. These are in good agreement with the observed diagrams, allowing us to isolate those stars from the inner disk and bulge. After correcting for local dust-induced asymmetries, we find evidence for longitude-dependent asymmetries in the distant J and K sources, consistent with the general predictions of some Galactic bar models. We consider complementary L-band observations in a second paper.Comment: 14 pages, 33 figures, LaTeX, MNRAS accepte

    Observatory/data centre partnerships and the VO-centric archive: The JCMT Science Archive experience

    Full text link
    We present, as a case study, a description of the partnership between an observatory (JCMT) and a data centre (CADC) that led to the development of the JCMT Science Archive (JSA). The JSA is a successful example of a service designed to use Virtual Observatory (VO) technologies from the start. We describe the motivation, process and lessons learned from this approach.Comment: Accepted for publication in the second Astronomy & Computing Special Issue on the Virtual Observatory; 10 pages, 5 figure

    Managing Research Data in Big Science

    Get PDF
    The project which led to this report was funded by JISC in 2010--2011 as part of its 'Managing Research Data' programme, to examine the way in which Big Science data is managed, and produce any recommendations which may be appropriate. Big science data is different: it comes in large volumes, and it is shared and exploited in ways which may differ from other disciplines. This project has explored these differences using as a case-study Gravitational Wave data generated by the LSC, and has produced recommendations intended to be useful variously to JISC, the funding council (STFC) and the LSC community. In Sect. 1 we define what we mean by 'big science', describe the overall data culture there, laying stress on how it necessarily or contingently differs from other disciplines. In Sect. 2 we discuss the benefits of a formal data-preservation strategy, and the cases for open data and for well-preserved data that follow from that. This leads to our recommendations that, in essence, funders should adopt rather light-touch prescriptions regarding data preservation planning: normal data management practice, in the areas under study, corresponds to notably good practice in most other areas, so that the only change we suggest is to make this planning more formal, which makes it more easily auditable, and more amenable to constructive criticism. In Sect. 3 we briefly discuss the LIGO data management plan, and pull together whatever information is available on the estimation of digital preservation costs. The report is informed, throughout, by the OAIS reference model for an open archive

    Managing Research Data: Gravitational Waves

    Get PDF
    The project which led to this report was funded by JISC in 2010ā€“2011 as part of its ā€˜Managing Research Dataā€™ programme, to examine the way in which Big Science data is managed, and produce any recommendations which may be appropriate. Big science data is different: it comes in large volumes, and it is shared and exploited in ways which may differ from other disciplines. This project has explored these differences using as a case-study Gravitational Wave data generated by the LSC, and has produced recommendations intended to be useful variously to JISC, the funding council (STFC) and the LSC community. In Sect. 1 we deļ¬ne what we mean by ā€˜big scienceā€™, describe the overall data culture there, laying stress on how it necessarily or contingently differs from other disciplines. In Sect. 2 we discuss the beneļ¬ts of a formal data-preservation strategy, and the cases for open data and for well-preserved data that follow from that. This leads to our recommendations that, in essence, funders should adopt rather light-touch prescriptions regarding data preservation planning: normal data management practice, in the areas under study, corresponds to notably good practice in most other areas, so that the only change we suggest is to make this planning more formal, which makes it more easily auditable, and more amenable to constructive criticism. In Sect. 3 we brieļ¬‚y discuss the LIGO data management plan, and pull together whatever information is available on the estimation of digital preservation costs. The report is informed, throughout, by the OAIS reference model for an open archive. Some of the reportā€™s ļ¬ndings and conclusions were summarised in [1]. See the document history on page 37
    • ā€¦
    corecore