93,845 research outputs found

    Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies

    Get PDF
    A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities

    Estimating, planning and managing Agile Web development projects under a value-based perspective

    Get PDF
    Context: The processes of estimating, planning and managing are crucial for software development projects, since the results must be related to several business strategies. The broad expansion of the Internet and the global and interconnected economy make Web development projects be often characterized by expressions like delivering as soon as possible, reducing time to market and adapting to undefined requirements. In this kind of environment, traditional methodologies based on predictive techniques sometimes do not offer very satisfactory results. The rise of Agile methodologies and practices has provided some useful tools that, combined with Web Engineering techniques, can help to establish a framework to estimate, manage and plan Web development projects. Objective: This paper presents a proposal for estimating, planning and managing Web projects, by combining some existing Agile techniques with Web Engineering principles, presenting them as an unified framework which uses the business value to guide the delivery of features. Method: The proposal is analyzed by means of a case study, including a real-life project, in order to obtain relevant conclusions. Results: The results achieved after using the framework in a development project are presented, including interesting results on project planning and estimation, as well as on team productivity throughout the project. Conclusion: It is concluded that the framework can be useful in order to better manage Web-based projects, through a continuous value-based estimation and management process.Ministerio de EconomĂ­a y Competitividad TIN2013-46928-C3-3-

    Technical Debt Prioritization: State of the Art. A Systematic Literature Review

    Get PDF
    Background. Software companies need to manage and refactor Technical Debt issues. Therefore, it is necessary to understand if and when refactoring Technical Debt should be prioritized with respect to developing features or fixing bugs. Objective. The goal of this study is to investigate the existing body of knowledge in software engineering to understand what Technical Debt prioritization approaches have been proposed in research and industry. Method. We conducted a Systematic Literature Review among 384 unique papers published until 2018, following a consolidated methodology applied in Software Engineering. We included 38 primary studies. Results. Different approaches have been proposed for Technical Debt prioritization, all having different goals and optimizing on different criteria. The proposed measures capture only a small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We report an impact map of such factors. However, there is a lack of empirical and validated set of tools. Conclusion. We observed that technical Debt prioritization research is preliminary and there is no consensus on what are the important factors and how to measure them. Consequently, we cannot consider current research conclusive and in this paper, we outline different directions for necessary future investigations

    Software Reliability in Semantic Web Service Composition Applications

    Get PDF
    Web Service Composition allows the development of easily reconfigurable applications that can be quickly adapted to business changes. Due to the shift in paradigm from traditional systems, new approaches are needed in order to evaluate the reliability of web service composition applications. In this paper we present an approach based on intelligent agents for semiautomatic composition as well as methods for assessing reliability. Abstract web services, corresponding to a group of services that accomplishes a specific functionality are used as a mean of assuring better system reliability. The model can be extended with other Quality of Services – QoS attributes.Software Reliability, Web Service Composition, Intelligent Agents
    • 

    corecore