62,130 research outputs found

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    Water level monitoring and controlling of water treatment plants using wireless sensors in LabVIEW

    Get PDF
    Monitoring and controlling systems are taken as the main entity of any field which can ensure for the effective performance, hence its importance is rising exponentially in industry field. There can be many factors which can bring variations in those systems. This may cease the efficiency of the industry and destruction of industrial equipment. Therefore, monitoring, evaluation and controlling of the variables of any system is significantly important. The main objective of this research is to investigate the process of combining monitoring and controlling of the water level in the distribution tanks of water treatment plants by using wireless sensors network. The design and developed prototype of remote monitoring and controlling system of water levels in various tanks can be used in different parts of the water treatment plants. We have proposed, developed and tested hardware module based on two Arduino Mega2560 boards linked wirelessly by using two NRF transceivers. Remote Arduino is designed to monitor the water flow and the level of the distribution tank besides controlling the water level whenever is necessary. The real time sensors readings obtained are observed by specially designed LabVIEW application using graphical user interface running on a PC connected directly to the local Arduino. The application displays and analyses sensors reading on the front panel. Water level is controlled based on preset values entered by the user. The experimental result and percentage error curve endorse the reliability and feasibility of the proposed system to provide a solution for similar problems in industrial liquids treatment process applications

    Sir epidemic and predator - prey models of fractional-order

    Get PDF
    Recently, many deterministic mathematical models such as ordinary differential equations have been extended to fractional models, which are transformed using fractional differential equations. It was believed that these fractional models are more realistic to represent the daily life phenomena. The main focus of this report is to extend the model of a predator-prey and the SIR epidemic models to fractional model. More specifically, the fractional predator-prey model which depend on the availability of a biotic resources was discussed. On the other hand, fractional SIR epidemic model with sub-optimal immunity, nonlinear incidence and saturated recovery rate was also discussed. The fractional ordinary differential equations were defined in the sense of the Caputo derivative. Stability analysis of the equilibrium points of the models for the fractional models were analyzed. Furthermore, the Hopf bifurcation analysis of each model was investigated . The result obtained showed that the model undergo Hopf bifurcation for some values. Throughout the project, the Adams-type predictor-corrector method to obtain the numerical solutions of the fractional models was applied. All computations were done by using mathematical software, Maple 18

    3D Time-Based Aural Data Representation Using D4 Library’s Layer Based Amplitude Panning Algorithm

    Get PDF
    Presented at the 22nd International Conference on Auditory Display (ICAD-2016)The following paper introduces a new Layer Based Amplitude Panning algorithm and supporting D4 library of rapid prototyping tools for the 3D time-based data representation using sound. The algorithm is designed to scale and support a broad array of configurations, with particular focus on High Density Loudspeaker Arrays (HDLAs). The supporting rapid prototyping tools are designed to leverage oculocentric strategies to importing, editing, and rendering data, offering an array of innovative approaches to spatial data editing and representation through the use of sound in HDLA scenarios. The ensuing D4 ecosystem aims to address the shortcomings of existing approaches to spatial aural representation of data, offers unique opportunities for furthering research in the spatial data audification and sonification, as well as transportable and scalable spatial media creation and production
    • …
    corecore