4,936 research outputs found

    Hacker Combat: A Competitive Sport from Programmatic Dueling & Cyberwarfare

    Full text link
    The history of humanhood has included competitive activities of many different forms. Sports have offered many benefits beyond that of entertainment. At the time of this article, there exists not a competitive ecosystem for cyber security beyond that of conventional capture the flag competitions, and the like. This paper introduces a competitive framework with a foundation on computer science, and hacking. This proposed competitive landscape encompasses the ideas underlying information security, software engineering, and cyber warfare. We also demonstrate the opportunity to rank, score, & categorize actionable skill levels into tiers of capability. Physiological metrics are analyzed from participants during gameplay. These analyses provide support regarding the intricacies required for competitive play, and analysis of play. We use these intricacies to build a case for an organized competitive ecosystem. Using previous player behavior from gameplay, we also demonstrate the generation of an artificial agent purposed with gameplay at a competitive level

    Reasoning of Competitive Non-Functional Requirements in Agent-Based Models

    Get PDF
    During the decision-making process in real-time competitive environments, there is a need to perform concurrent optimisation of multiple competitive objectives to select an optimal design decision for interdependent stakeholders. To handle such issues, this thesis successfully assimilates the goal-oriented requirements-engineering knowledge with analytical decision-making approaches to facilitate reasoning and analysis by encouraging stakeholders’ involvement. This leads to optimal decisions with domain knowledge improvement in the agent-based i*-goal model by balancing multiple conflicting non-functional requirements reciprocally

    SiMAMT: A Framework for Strategy-Based Multi-Agent Multi-Team Systems

    Get PDF
    Multi-agent multi-team systems are commonly seen in environments where hierarchical layers of goals are at play. For example, theater-wide combat scenarios where multiple levels of command and control are required for proper execution of goals from the general to the foot soldier. Similar structures can be seen in game environments, where agents work together as teams to compete with other teams. The different agents within the same team must, while maintaining their own ‘personality’, work together and coordinate with each other to achieve a common team goal. This research develops strategy-based multi-agent multi-team systems, where strategy is framed as an instrument at the team level to coordinate the multiple agents of a team in a cohesive way. A formal specification of strategy and strategy-based multi-agent multi-team systems is provided. A framework is developed called SiMAMT (strategy- based multi-agent multi-team systems). The different components of the framework, including strategy simulation, strategy inference, strategy evaluation, and strategy selection are described. A graph-matching approximation algorithm is also developed to support effective and efficient strategy inference. Examples and experimental results are given throughout to illustrate the proposed framework, including each of its composite elements, and its overall efficacy. This research make several contributions to the field of multi-agent multi-team systems: a specification for strategy and strategy-based systems, and a framework for implementing them in real-world, interactive-time scenarios; a robust simulation space for such complex and intricate interaction; an approximation algorithm that allows for strategy inference within these systems in interactive-time; experimental results that verify the various sub-elements along with a full-scale integration experiment showing the efficacy of the proposed framework

    Human-Machine Teamwork: An Exploration of Multi-Agent Systems, Team Cognition, and Collective Intelligence

    Get PDF
    One of the major ways through which humans overcome complex challenges is teamwork. When humans share knowledge and information, and cooperate and coordinate towards shared goals, they overcome their individual limitations and achieve better solutions to difficult problems. The rise of artificial intelligence provides a unique opportunity to study teamwork between humans and machines, and potentially discover insights about cognition and collaboration that can set the foundation for a world where humans work with, as opposed to against, artificial intelligence to solve problems that neither human or artificial intelligence can solve on its own. To better understand human-machine teamwork, it’s important to understand human-human teamwork (humans working together) and multi-agent systems (how artificial intelligence interacts as an agent that’s part of a group) to identify the characteristics that make humans and machines good teammates. This perspective lets us approach human-machine teamwork from the perspective of the human as well as the perspective of the machine. Thus, to reach a more accurate understanding of how humans and machines can work together, we examine human-machine teamwork through a series of studies. In this dissertation, we conducted 4 studies and developed 2 theoretical models: First, we focused on human-machine cooperation. We paired human participants with reinforcement learning agents to play two game theory scenarios where individual interests and collective interests are in conflict to easily detect cooperation. We show that different reinforcement models exhibit different levels of cooperation, and that humans are more likely to cooperate if they believe they are playing with another human as opposed to a machine. Second, we focused on human-machine coordination. We once again paired humans with machines to create a human-machine team to make them play a game theory scenario that emphasizes convergence towards a mutually beneficial outcome. We also analyzed survey responses from the participants to highlight how many of the principles of human-human teamwork can still occur in human-machine teams even though communication is not possible. Third, we reviewed the collective intelligence literature and the prediction markets literature to develop a model for a prediction market that enables humans and machines to work together to improve predictions. The model supports artificial intelligence operating as a peer in the prediction market as well as a complementary aggregator. Fourth, we reviewed the team cognition and collective intelligence literature to develop a model for teamwork that integrates team cognition, collective intelligence, and artificial intelligence. The model provides a new foundation to think about teamwork beyond the forecasting domain. Next, we used a simulation of emergency response management to test the different teamwork aspects of a variety of human-machine teams compared to human-human and machine-machine teams. Lastly, we ran another study that used a prediction market to examine the impact that having AI operate as a participant rather than an aggregator has on the predictive capacity of the prediction market. Our research will help identify which principles of human teamwork are applicable to human-machine teamwork, the role artificial intelligence can play in enhancing collective intelligence, and the effectiveness of human-machine teamwork compared to single artificial intelligence. In the process, we expect to produce a substantial amount of empirical results that can lay the groundwork for future research of human-machine teamwork

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams
    • …
    corecore