640 research outputs found

    High-fidelity Multidisciplinary Sensitivity Analysis and Design Optimization for Rotorcraft Applications

    Get PDF
    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. A sensitivity-enabled fluid dynamics solver and a nonlinear flexible multibody dynamics solver are coupled to predict aerodynamic loads and structural responses of helicopter rotor blades. A discretely consistent adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system is validated by conducting simulations for a benchmark rotorcraft model and comparing solutions with established analyses and experimental data. Sensitivities of lift computed by the multidisciplinary sensitivity analysis are verified by comparison with the sensitivities obtained by complex-variable simulations. Finally the multidisciplinary sensitivity analysis is applied to a constrained gradient-based design optimization for a HART-II rotorcraft configuration

    Development and Applications of Adjoint-Based Aerodynamic and Aeroacoustic Multidisciplinary Optimization for Rotorcraft

    Get PDF
    Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas. Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to utilize adjoint-based aeroacoustic and aerodynamic sensitivities; (2) to optimize the shape of proprotor blades to improve the overall performance of selected rotorcraft from both aerodynamic and aeroacoustic perspectives. This dissertation reports on the development and application of an unsteady discrete adjoint solver for aerodynamic and aeroacoustic coupling to obtain an improved design for quieter rotorcraft. The optimization framework developed through this dissertation can be utilized for multiple flight conditions, multiple receivers, and multiple optimization objectives within the same design process. SU2-based code development involves the implementation of aeroacoustic analysis, adjoint computations, and integrations into a multidisciplinary rotorcraft optimization suite. A computational aeroacoustics tool is embedded into the SU2-suite to predict the propagation of the emitted noise from the moving sources with high fidelity. Capabilities of the developed computational aeroacoustics tool are demonstrated for a range of rotor, propeller, and proprotor applications, and they are verified by comparing with wind tunnel data whenever it is available. The aeroacoustic tool also computes sensitivities with respect to the conserved variables and grid coordinates by employing the algorithmic differentiation method. Integration of an acoustic solver into the discrete adjoint solver and related modifications enable the code to compute aeroacoustic sensitivities with respect to the design variables. Applying the developed optimization framework for a proprotor aims to reduce the noise radiation without sacrificing the required aerodynamic performance value. As an outcome of the optimization during forward-flight and hover, the reshaped blade design emits and propagates lower noise levels as perceived by multiple observers. The major contributions are: (1) a multidisciplinary optimization framework that presents an optimized rotorcraft design for better aeroacoustics and aerodynamics; (2) a novel adjoint-based formulation for aeroacoustic sensitivities with respect to design variables; (3) single acoustic objective function including multiple flight conditions and multiple microphone positions; (4) implementation of Farassat 1A formulation into opensource software, SU2, to compute noise propagation emitted from moving sources. In summary, this dissertation provides the results with high fidelity, a well-integrated and rapidly converging optimization tool to improve the rotorcraft\u27s aeroacoustic performance while retaining or improving the aerodynamic performance. Among the conclusions are the following: (1) Computational fluid dynamics analyses (SU2-CFD) can produce accurate results for various rotorcraft applications. (2) The developed aeroacoustic code predicts noise propagation emitted from propellers, rotors, and proprotors with high-fidelity. (3) The acoustic interaction between propeller and wing components can be assessed by employing the aeroacoustic solver. (4) The multidisciplinary optimization framework successively reduces noise level emitted by a proprotor in multiple flight configurations. (5) The optimized design improves emitted noise radiation while satisfying the given aerodynamic constraint(s)

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    The prospect of using LES and DES in engineering design, and the research required to get there

    Full text link
    In this paper we try to look into the future to divine how large eddy and detached eddy simulations (LES and DES, respectively) will be used in the engineering design process about 20-30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed.Comment: accepted for publication in the Royal Society Philosophical Transactions

    Seismic waveform sensitivity to global boundary topography

    Get PDF
    We investigate the implications of lateral variations in the topography of global seismic discontinuities, in the framework of high-resolution forward modelling and seismic imaging. We run 3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models including core-mantle boundary topography anomalies of ∼1000 km spatial wavelength and up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive primarily to large-scale structure, whereas the former only to small scale, where large and small are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D numerical domain. We compute and analyse a suite of kernels for upper and lower mantle discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff sensitivity footprints are in good agreement with the result obtained cross-correlating perturbed and unperturbed seismogram, validating our approach against full 3-D modelling to invert for such structure

    High-Fidelity Multidisciplinary Design Optimization Methodology with Application to Rotor Blades

    Get PDF
    A multidisciplinary design optimization procedure has been developed and applied to rotorcraft simulations involving tightly-coupled, high-fidelity computational fluid dynamics and comprehensive analysis. A discretely-consistent, adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows on unstructured, dynamic, overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system for high-fidelity rotorcraft analysis is verified; simulation results exhibit good agreement with established solutions. A constrained gradient-based design optimization for a HART-II rotorcraft configuration is demonstrated. The computational cost for individual components of the multidisciplinary sensitivity analysis is assessed and improved

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    Aerodynamic Shape Optimization of a Dual-Stream Supersonic Plug Nozzle

    Get PDF
    Aerodynamic shape optimization was performed on an isolated axisymmetric plug nozzle sized for a supersonic business jet. The dual-stream concept was tailored to attenuate nearfield pressure disturbances without compromising nozzle performance. Adjoint-based anisotropic mesh refinement was applied to resolve nearfield compression and expansion features in the baseline viscous grid. Deformed versions of the adapted grid were used for subsequent adjoint-driven shape optimization. For design, a nonlinear gradient-based optimizer was coupled to the discrete adjoint formulation of the Reynolds-averaged Navier- Stokes equations. All nozzle surfaces were parameterized using 3rd order B-spline interpolants and perturbed axisymmetrically via free-form deformation. Geometry deformations were performed using 20 design variables shared between the outer cowl, shroud and centerbody nozzle surfaces. Interior volume grid deformation during design was accomplished using linear elastic mesh morphing. The nozzle optimization was performed at a design cruise speed of Mach 1.6, assuming core and bypass pressure ratios of 6.19 and 3.24, respectively. Ambient flight conditions at design were commensurate with 45,000-ft standard day atmosphere
    • …
    corecore