27,271 research outputs found

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Attention-controlled acquisition of a qualitative scene model for mobile robots

    Get PDF
    Haasch A. Attention-controlled acquisition of a qualitative scene model for mobile robots. Bielefeld (Germany): Bielefeld University; 2007.Robots that are used to support humans in dangerous environments, e.g., in manufacture facilities, are established for decades. Now, a new generation of service robots is focus of current research and about to be introduced. These intelligent service robots are intended to support humans in everyday life. To achieve a most comfortable human-robot interaction with non-expert users it is, thus, imperative for the acceptance of such robots to provide interaction interfaces that we humans are accustomed to in comparison to human-human communication. Consequently, intuitive modalities like gestures or spontaneous speech are needed to teach the robot previously unknown objects and locations. Then, the robot can be entrusted with tasks like fetch-and-carry orders even without an extensive training of the user. In this context, this dissertation introduces the multimodal Object Attention System which offers a flexible integration of common interaction modalities in combination with state-of-the-art image and speech processing techniques from other research projects. To prove the feasibility of the approach the presented Object Attention System has successfully been integrated in different robotic hardware. In particular, the mobile robot BIRON and the anthropomorphic robot BARTHOC of the Applied Computer Science Group at Bielefeld University. Concluding, the aim of this work, to acquire a qualitative Scene Model by a modular component offering object attention mechanisms, has been successfully achieved as demonstrated on numerous occasions like reviews for the EU-integrated Project COGNIRON or demos

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Multimodal Interaction Recognition Mechanism by Using Midas Featured By Data-Level and Decision-Level Fusion

    Get PDF
    Natural User Interfaces (NUI's) dealing with gestures is an alternative of traditional input devices on multi-touch panels. Rate of growth in the Sensor technology has increased the use of multiple sensors to deal with various monitoring and compatibility issues of machines. Research on data-level fusion models requires more focus on the fusion of multiple degradation-based sensor data. Midas, a novel declarative language to express multimodal interaction patterns has come up with the idea of developers required patterns description by employing multi-model interaction mechanism. The language as a base interface deals with minimum complexity issues like controlling inversion and intermediary states by means of data fusion, data processing and data selection provisioning high-level programming abstractions

    An Abstraction Framework for Tangible Interactive Surfaces

    Get PDF
    This cumulative dissertation discusses - by the example of four subsequent publications - the various layers of a tangible interaction framework, which has been developed in conjunction with an electronic musical instrument with a tabletop tangible user interface. Based on the experiences that have been collected during the design and implementation of that particular musical application, this research mainly concentrates on the definition of a general-purpose abstraction model for the encapsulation of physical interface components that are commonly employed in the context of an interactive surface environment. Along with a detailed description of the underlying abstraction model, this dissertation also describes an actual implementation in the form of a detailed protocol syntax, which constitutes the common element of a distributed architecture for the construction of surface-based tangible user interfaces. The initial implementation of the presented abstraction model within an actual application toolkit is comprised of the TUIO protocol and the related computer-vision based object and multi-touch tracking software reacTIVision, along with its principal application within the Reactable synthesizer. The dissertation concludes with an evaluation and extension of the initial TUIO model, by presenting TUIO2 - a next generation abstraction model designed for a more comprehensive range of tangible interaction platforms and related application scenarios

    Template Matching Based Sign Language Recognition System for Android Devices

    Get PDF
    An android based sign language recognition system for selected English vocabularies was developed with the explicit objective to examine the specific characteristics that are responsible for gestures recognition. Also, a recognition model for the process was designed, implemented, and evaluated on 230 samples of hand gestures.  The collected samples were pre-processed and rescaled from 3024 ×4032 pixels to 245 ×350 pixels. The samples were examined for the specific characteristics using Oriented FAST and Rotated BRIEF, and the Principal Component Analysis used for feature extraction. The model was implemented in Android Studio using the template matching algorithm as its classifier. The performance of the system was evaluated using precision, recall, and accuracy as metrics. It was observed that the system obtained an average classification rate of 87%, an average precision value of 88% and 91% for the average recall rate on the test data of hand gestures.  The study, therefore, has successfully classified hand gestures for selected English vocabularies. The developed system will enhance the communication skills between hearing and hearing-impaired people, and also aid their teaching and learning processes. Future work include exploring state-of-the-art machining learning techniques such Generative Adversarial Networks (GANs) for large dataset to improve the accuracy of results. Keywords— Feature extraction; Gestures Recognition; Sign Language; Vocabulary, Android device

    Multi-Modal Interfaces for Sensemaking of Graph-Connected Datasets

    Get PDF
    The visualization of hypothesized evolutionary processes is often shown through phylogenetic trees. Given evolutionary data presented in one of several widely accepted formats, software exists to render these data into a tree diagram. However, software packages commonly in use by biologists today often do not provide means to dynamically adjust and customize these diagrams for studying new hypothetical relationships, and for illustration and publication purposes. Even where these options are available, there can be a lack of intuitiveness and ease-of-use. The goal of our research is, thus, to investigate more natural and effective means of sensemaking of the data with different user input modalities. To this end, we experimented with different input modalities, designing and running a series of prototype studies, ultimately focusing our attention on pen-and-touch. Through several iterations of feedback and revision provided with the help of biology experts and students, we developed a pen-and-touch phylogenetic tree browsing and editing application called PhyloPen. This application expands on the capabilities of existing software with visualization techniques such as overview+detail, linked data views, and new interaction and manipulation techniques using pen-and-touch. To determine its impact on phylogenetic tree sensemaking, we conducted a within-subject comparative summative study against the most comparable and commonly used state-of-the-art mouse-based software system, Mesquite. Conducted with biology majors at the University of Central Florida, each used both software systems on a set number of exercise tasks of the same type. Determining effectiveness by several dependent measures, the results show PhyloPen was significantly better in terms of usefulness, satisfaction, ease-of-learning, ease-of-use, and cognitive load and relatively the same in variation of completion time. These results support an interaction paradigm that is superior to classic mouse-based interaction, which could have the potential to be applied to other communities that employ graph-based representations of their problem domains

    Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects
    corecore