106 research outputs found

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Information Theoretic Limits on Non-cooperative Airborne Target Recognition by Means of Radar Sensors

    Get PDF
    The main objective of this research is to demonstrate that information theory, and specifically the concept of mutual information (MI) can be used to predict the maximum target recognition performance for a given radar concept in combination with a given set of targets of interest. This approach also allows for the direct comparison of disparate approaches to designing a radar concept which is capable of target recognition without resorting to choosing specific feature extraction and classification algorithms. The main application area of the study is the recognition of fighter type aircraft using surface based radar systems, although the results are also applicable to airborne radars. Information theoretic concepts are developed mathematically for the analysis of the radar target recognition problem. The various forms of MI required for this application are derived in detail and are tested rigorously against results from digital communication theory. The results are also compared to Shannon’s channel capacity bound, which is the fundamental limit on the amount of information which can be transmitted over a channel. Several sets of simulation based experiments were conducted to demonstrate the insights achievable by applying MI concepts to quantitatively predict the maximum achievable performance of disparate approaches to the radar target recognition problem. Asymptotic computational electromagnetic code was applied to calculate the target’s response to the radar signal for freely available geometrical models of fighter aircraft. The calculated target responses were then used to quantify the amount of information which is transmitted back to the radar about the target as a function of signal to noise ratio (SNR). The information content of the F-14, F-15 and F-16 were evaluated for a 480 MHz bandwidth waveform at 10 GHz as a baseline. Several ultra-wideband (UWB) waveforms, spanning 2-10 GHz, 10- 18 GHz and 2-18 GHz, but which were highly range ambiguous, were evaluated and showed SNR gains of 0.5-2 dB relative to the baseline. The effect of sensing the full polarimetric response of an F-18 and F-35 was evaluated and SNR gains of 5-7 dB over a single linear polarisation were measured. A Boeing 707 scale model (1:25) was measured in the University of Pretoria’s compact range spanning 2-18 GHz and gains of 2 dB were observed between single and dual linear polarisations. This required numerical integration in 8004 dimensions, demonstrating the stability of the MI estimation algorithm in high dimensional signal spaces. The information gained by including the difference channel signal of an X-band monopulse radar for the F-14 data set was approximately 3 dB at 50 km and increased to 4.5 dB at 2 km due to the increased target extent relative to the antenna pattern. This experiment necessitated the use of target profiles which were matched to the range of the target to achieve maximum information transfer. Experiments were conducted to evaluate the loss in information due to envelope processing. For the baseline data set, SNR losses in the region of 7 dB were measured. Linear pre-processing using the fast Fourier transform (FFT) and principal component analysis (PCA), before envelope processing, were compared and the PCA algorithm outperformed the FFT by approximately 1 dB at high MI values. Finally, the expression for multi-target MI was applied in conjunction with Fano’s inequality to predict the probability of incorrectly classifying a target. Probability of error is a critical parameter for a radar user. For the baseline data set, at P(error) = 0.001, maximum losses in the region of 0.6 to 0.9 dB were measured. This result shows that these targets are easily separable in the signal space. This study was only the proverbial “tip of the iceberg” and future research could extend the results and applications of the techniques developed. The types of targets and configurations of the individual targets could be increased and analysed. The analysis should also be extended to describe effects internal to the radar such as phase noise, spurious signals and analogue to digital converters and external effects such as clutter and multipath. The techniques could also be applied to quantify the gains in target recognition performance achievable for multistatic radar, multiple input multiple output (MIMO) radar and more exotic concepts, such as the fusion of data from multiple monostatic microwave radars with multi-receiver multi-band passive bistatic radar (PBR) data

    Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 1: Baseline system description

    Get PDF
    A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's

    Investigation of developments in interferometric synthetic aperture radar until 1994

    Get PDF
    Bibliography: p. 149-155.This thesis examines the topic of Synthetic Aperture Radar Interferometry in a historical perspective, tracing its development from its beginnings in the 1960s up until May 1994. Applications are listed and airborne and spaceborne implementations reviewed. The underlying theory of interferometry is explained, including a discussion of error sources, and a simulation for point targets is documented to illustrate the interferometric processing steps. The application of the SASAR VHF SAR system to interferometric operation is examined analytically

    Ground moving target tracking with space-time adaptive radar

    Get PDF
    Ground moving target tracking by airborne radar provides situational awareness of vehicle movements in the supervised region. Vehicles are detected by applying space time adaptive processing to the received multi channel radar data. The detections are then fed to a tracking algorithm that processes them to tracks. In literature, radar signal processing and ground target tracking are treated as two separate topics and results are not validated by experimental data. The first objective of this thesis is to provide a closer link between these fields. The second objective is to show that tracking performance can be improved by providing additional data from the radar signal processing to the tracking step. The third objective is to validate the algorithm and the performance improvement using experimental data. As a result this thesis presents a unified treatment of ground moving target tracking from radar raw data to established tracks. A complete reference algorithm for ground moving target tracking based on the Gaussian mixture probability hypothesis density filter is presented. In particular, Jacobians of the observation process are derived. They are presented in such a form that immediate implementation in a programming language is possible. In the course of this thesis a measurement campaign with the experimental radar PAMIR of Fraunhofer FHR was conducted. The experiment included two GPS equipped reference vehicles and a multitude of targets of opportunity. Tracking results obtained with this experimental data and the reference tracking algorithm of this thesis are shown. The thesis also enhances the reference target tracking algorithm by a parameter that characterizes the variance of the direction of arrival measurement of the target signal. This parameter is determined adaptively depending on the estimated signal strength and the clutter background. The major contribution with regard to this enhancement is a thorough experimental validation: Firstly, a comparison between GPS based measurements and radar based measurements of the direction of arrival shows that this variance captures the distribution of measurement errors excellently. Secondly, tracking results are compared to the GPS tracks of the ground truth vehicles. It is found that the enhanced algorithm yields superior track quality with respect to both track accuracy and track continuity.Bodenzielverfolgung mit luftgestütztem Radar liefert das Lagebild von Fahrzeug­bewegungen innerhalb des beobachteten Gebiets. Fahrzeuge werden durch die Anwendung von Raum-Zeit adaptiver Signalverarbeitung (STAP) entdeckt. Die Entdeckungen werden dann von einem Zielverfolgungsalgorithmus zu Zielspuren verarbeitet. In der Literatur werden Radarsignalverarbeitung und Zielverfolgung als zwei getrennte Forschungsfelder behandelt und die Bodenzielverfolgung wird nicht anhand von Realdaten validiert. Das erste Ziel dieser Arbeit ist, eine engere Verbindung zwischen beiden Feldern herzustellen. Das zweite Ziel ist zu zeigen, dass die Qualität der Zielverfolgung durch das Verwenden zusätzlicher, durch die Radarsignalverarbeitung gewonnene Information verbessert werden kann. Das dritte Ziel ist, die Funktionalität der Zielverfolgung und die Verbesserung der Leistung durch experimentelle Realdaten zu belegen. Somit stellt diese Arbeit eine Gesamtbehandlung der Bodenzielverfolgung von den Radar-Rohdaten bis zu Zielspuren dar. Es wird ein vollständiger, auf dem Gaussian Mixture Probability Hypothesis Density Filter basierender Referenzalgorithmus für die Bodenzielverfolgung entwickelt. Insbesondere werden Jacobimatrizen der Beobachtungsfunktion hergeleitet. Sie werden in der Arbeit so dargestellt, dass sie direkt in einer Programmiersprache implementiert werden können. Im Zuge dieser Arbeit wurde ein Zielverfolgungs-Experiment mit dem Experimentalsystem PAMIR des Fraunhofer FHR durchgeführt. In dem Experiment wurden neben einer Vielzahl von Gelegenheitszielen zwei mit GPS-Geräten ausgerüstete Fahrzeuge von dem Radar beobachtet. Auf Basis dieses Experiments und des Referenzalgorithmus werden Zielverfolgungsergebnisse vorgestellt. Darüber hinaus erweitert diese Arbeit den Referenzalgorithmus um einen Parameter, der die Varianz der Richtungsschätzung des Zielsignals charakterisiert. Dieser Parameter wird adaptiv anhand der geschätzten Signalstärke und der Stärke störender Bodenrückstreuungen festgelegt. Der wesentliche Beitrag dieser Arbeit in Bezug auf diese Erweiterung ist eine gründliche experimentelle Validierung. Erstens zeigt der Vergleich von GPS- und Radar-basierten Richtungsschätzungen, dass dieser Parameter die Verteilung des Messfehlers exzellent beschreibt. Zweitens werden Zielverfolgungsergebnisse mit den GPS-Spuren verglichen. Es zeigt sich, dass der erweiterte Algorithmus sowohl in Bezug auf die Spurgenauigkeit als auch in Bezug auf die Spurkontinuität die Zielverfolgung verbessert

    Low-THz Automotive 3D Imaging Radar

    Get PDF
    This thesis lays out initial investigations into the 3D imaging capabilities of low-THz radar for automotive applications. This includes a discussion of the state of the art of automotive sensors, and the need for a robust, high-resolution imaging system to compliment and address the short-comings of these sensors. The unique capabilities of low-THz radar may prove to be well-suited to meet these needs, but they require 3D imaging algorithms which can exploit these capabilities effectively. One such unique feature is the extremely wide signal bandwidth, which yields a fine range resolution. This is a feature of low-THz radar which has not been discussed or properly investigated before, particularly in the context of generating the 3D position of an object from range information. The progress and experimental verification of these algorithms with a prototype multi-receiver 300GHz radar throughout this project are described; progressing from simple position estimation to highly detailed 3D radar imaging. The system is tested in a variety of different scenarios which a vehicle must be able to navigate, and the 3D imaging radar is compared with current automotive demonstrators experimentally

    Active target location using crossed-dipole based circular array FMCW radar

    Get PDF
    Active target location systems capable of measuring both range and bearing have niche applications, including maritime navigation where a seafaring vessel is manoeuvring in the vicinity of a harbour or an oil rig. Such systems can also be used to determine the location of other vessels for vessel-to-vessel personnel or material transfer. The usual approach is to combine FMCW radar with a mechanically or electrically steered beam, establishing both range and bearing to a target, respectively. The radar system described in this thesis is an innovative alternative approach, one that combines FMCW radar with a crossed-dipole antenna, which conveniently functions as a circular array, thereby simultaneously determining the range and bearing of an active target. By using phase mode excitation, neither mechanical nor electrical beam steering is required to locate the active target, as the receive antenna is able to monitor 360 in azimuth continually. However, due to the use of +1st and -1st order phase modes, the radar can only operate in an 180 sector unambiguously. The usual inherent problems with circular arrays being aected by multipath are also easily mitigated by the range resolution of the radar. This thesis describes in detail the development of a 2.44 GHz crossed-dipole antenna structure and its associated feed network. It also describes the first prototypes that led to its current form and goes on to discuss in detail the design and construction of the radar system and frequency shifted active target. Frequency shifting was implemented within the target to overcome the increased clutter power due to the omnidirectional receive antenna. However, firstly this thesis lays the foundation of radar theory, active targets, phase modes and basic antenna theory. Some of the literature associated with radars currently used in this type of scenario is also discussed. Appropriate analysis, modelling and experimental validation is conducted to assess system performance in relation to the predicted behaviour. The radar system was then tested in an open field, with the active target detected to a range of 125 m
    • …
    corecore