6 research outputs found

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Automated interpretation of benthic stereo imagery

    Get PDF
    Autonomous benthic imaging, reduces human risk and increases the amount of collected data. However, manually interpreting these high volumes of data is onerous, time consuming and in many cases, infeasible. The objective of this thesis is to improve the scientific utility of the large image datasets. Fine-scale terrain complexity is typically quantified by rugosity and measured by divers using chains and tape measures. This thesis proposes a new technique for measuring terrain complexity from 3D stereo image reconstructions, which is non-contact and can be calculated at multiple scales over large spatial extents. Using robots, terrain complexity can be measured without endangering humans, beyond scuba depths. Results show that this approach is more robust, flexible and easily repeatable than traditional methods. These proposed terrain complexity features are combined with visual colour and texture descriptors and applied to classifying imagery. New multi-dataset feature selection methods are proposed for performing feature selection across multiple datasets, and are shown to improve the overall classification performance. The results show that the most informative predictors of benthic habitat types are the new terrain complexity measurements. This thesis presents a method that aims to reduce human labelling effort, while maximising classification performance by combining pre-clustering with active learning. The results support that utilising the structure of the unlabelled data in conjunction with uncertainty sampling can significantly reduce the number of labels required for a given level of accuracy. Typically 0.00001–0.00007% of image data is annotated and processed for science purposes (20–50 points in 1–2% of the images). This thesis proposes a framework that uses existing human-annotated point labels to train a superpixel-based automated classification system, which can extrapolate the classified results to every pixel across all the images of an entire survey

    Automated interpretation of benthic stereo imagery

    Get PDF
    Autonomous benthic imaging, reduces human risk and increases the amount of collected data. However, manually interpreting these high volumes of data is onerous, time consuming and in many cases, infeasible. The objective of this thesis is to improve the scientific utility of the large image datasets. Fine-scale terrain complexity is typically quantified by rugosity and measured by divers using chains and tape measures. This thesis proposes a new technique for measuring terrain complexity from 3D stereo image reconstructions, which is non-contact and can be calculated at multiple scales over large spatial extents. Using robots, terrain complexity can be measured without endangering humans, beyond scuba depths. Results show that this approach is more robust, flexible and easily repeatable than traditional methods. These proposed terrain complexity features are combined with visual colour and texture descriptors and applied to classifying imagery. New multi-dataset feature selection methods are proposed for performing feature selection across multiple datasets, and are shown to improve the overall classification performance. The results show that the most informative predictors of benthic habitat types are the new terrain complexity measurements. This thesis presents a method that aims to reduce human labelling effort, while maximising classification performance by combining pre-clustering with active learning. The results support that utilising the structure of the unlabelled data in conjunction with uncertainty sampling can significantly reduce the number of labels required for a given level of accuracy. Typically 0.00001–0.00007% of image data is annotated and processed for science purposes (20–50 points in 1–2% of the images). This thesis proposes a framework that uses existing human-annotated point labels to train a superpixel-based automated classification system, which can extrapolate the classified results to every pixel across all the images of an entire survey
    corecore