288,185 research outputs found

    Axon: Application-Oriented Lightweight Transport Protocol Design

    Get PDF
    This paper describes the application-oriented lightweight transport protocol for object transfer (ALTP-OT) in the Axon host communication architecture for distributed applications. The Axon Project is investigating an integrated design of host architecture, operating systems, and communication protocols to allow the utilization of the high band-width provided by the next generation of communication networks. ALTP-OT provides the end-to-end transport of segment and message objects for interprocess communication across a very high speed internetwork, supporting demanding applications such as scientific visualization and imaging. ALTP-OT uses rate-based flow control specifically oriented to the transfer of objects directly between application memory spaces. This document is intended to present the design of ALTP-OT, rather than serve as a complete specification and implementation report. It should be treated as a request for comments, and will be periodically updated to reflect comments form the research community and progress on Axon design and prototype implementation. Last revision April 5, 1990

    The Application of Concurrent Object-Oriented Techniques to Reactive Systems

    Get PDF
    A language and system model combining concurrency, abstract communication and an object orientation offers several advantages in the design and implementation of large-scale reactive systems. An object-orientation captures the abstraction and variety of entities inhabiting the environment while the autonomy of actual entities is clearly reflected by expressions of concurrency in the program of the reactive system. Abstract communication is necessary to achieve data sharing among heterogeneous systems. However, attempts to design and implement a paradigm unifying these three features have encountered unexpected difficulties. These difficulties include the interference between concurrency control (synchronization) and inheritance, inadequate application-oriented communication abstractions, the absence of a useful model of exception handling for concurrent object-oriented applications, and the lack of a powerful and useful theory of computation based on asynchrony

    Integrating CLIPS applications into heterogeneous distributed systems

    Get PDF
    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center

    Real-time system design using preemption thresholds

    Get PDF
    As the real-time embedded systems encountered in applications such as telecommunications, aerospace, defense, and automatic control demand large, complex and multi-tasked software development, a new challenge has emerged for adopting the state-of-the-art software engineering technologies. Object-oriented design provides a scalable methodology with appropriate CASE tools for the design of software systems. Although these tools provides support for visual object-oriented modeling, design, simulation and code generation for general real-time systems, timing analysis is only available after the software is constructed. Consequently, the design-development process involving these tools in real-time systems becomes iterative and time-consuming. Introducing timing analysis in the design stage encounters a new problem. Traditional scheduling theory assumes a single level of task granularity. However, in industrial practice, common wisdom requires several design level tasks map into one run-time thread to reduce scheduling costs. This warrants a dual-level scheduling: preemptive scheduling between threads and non-preemptive scheduling between tasks in the same thread. Extending the scheduling theory to such an environment forms the scope of this thesis. Preemption threshold is introduced to control undesirable preemptions. Via a novel application of this concept, this thesis proposes a general scheduling model that subsumes both preemptive and non-preemptive scheduling models as special cases. The new theory deals with both independent and dependent tasks derivable from an object-oriented system model. Motivated by UML-RT modeling, the dependencies in our model include inter-task communication, resource sharing, and precedence. Important design issues covered include task priority and preemption threshold assignment and optimized task to thread mapping with respect of minimum scheduling cost and memory requirement. Quantitative performance evaluation is also conducted via simulation to validate the theory propose

    Design of a shared whiteboard component for multimedia conferencing

    Get PDF
    This paper reports on the development of a framework for multimedia applications in the domain of tele-education. The paper focuses on the protocol design of a specific component of the framework, namely a shared whiteboard application. The relationship of this component with other components of the framework is also discussed. A salient feature of the framework is that it uses an advanced ATM-based network service. The design of the shared whiteboard component is considered representative for the design as a whole, and is used to illustrate how a flexible protocol architecture utilizing innovative network functions and satisfying demanding user requirements can be developed

    Two Case Studies of Subsystem Design for General-Purpose CSCW Software Architectures

    Get PDF
    This paper discusses subsystem design guidelines for the software architecture of general-purpose computer supported cooperative work systems, i.e., systems that are designed to be applicable in various application areas requiring explicit collaboration support. In our opinion, guidelines for subsystem level design are rarely given most guidelines currently given apply to the programming language level. We extract guidelines from a case study of the redesign and extension of an advanced commercial workflow management system and place them into the context of existing software engineering research. The guidelines are then validated against the design decisions made in the construction of a widely used web-based groupware system. Our approach is based on the well-known distinction between essential (logical) and physical architectures. We show how essential architecture design can be based on a direct mapping of abstract functional concepts as found in general-purpose systems to modules in the essential architecture. The essential architecture is next mapped to a physical architecture by applying software clustering and replication to achieve the required distribution and performance characteristics

    Object-oriented Tools for Distributed Computing

    Get PDF
    Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver
    • ā€¦
    corecore