3,133 research outputs found

    Evaluation of Docker Containers for Scientific Workloads in the Cloud

    Full text link
    The HPC community is actively researching and evaluating tools to support execution of scientific applications in cloud-based environments. Among the various technologies, containers have recently gained importance as they have significantly better performance compared to full-scale virtualization, support for microservices and DevOps, and work seamlessly with workflow and orchestration tools. Docker is currently the leader in containerization technology because it offers low overhead, flexibility, portability of applications, and reproducibility. Singularity is another container solution that is of interest as it is designed specifically for scientific applications. It is important to conduct performance and feature analysis of the container technologies to understand their applicability for each application and target execution environment. This paper presents a (1) performance evaluation of Docker and Singularity on bare metal nodes in the Chameleon cloud (2) mechanism by which Docker containers can be mapped with InfiniBand hardware with RDMA communication and (3) analysis of mapping elements of parallel workloads to the containers for optimal resource management with container-ready orchestration tools. Our experiments are targeted toward application developers so that they can make informed decisions on choosing the container technologies and approaches that are suitable for their HPC workloads on cloud infrastructure. Our performance analysis shows that scientific workloads for both Docker and Singularity based containers can achieve near-native performance. Singularity is designed specifically for HPC workloads. However, Docker still has advantages over Singularity for use in clouds as it provides overlay networking and an intuitive way to run MPI applications with one container per rank for fine-grained resources allocation

    Assessing load-sharing within optimistic simulation platforms

    Get PDF
    The advent of multi-core machines has lead to the need for revising the architecture of modern simulation platforms. One recent proposal we made attempted to explore the viability of load-sharing for optimistic simulators run on top of these types of machines. In this article, we provide an extensive experimental study for an assessment of the effects on run-time dynamics by a load-sharing architecture that has been implemented within the ROOT-Sim package, namely an open source simulation platform adhering to the optimistic synchronization paradigm. This experimental study is essentially aimed at evaluating possible sources of overheads when supporting load-sharing. It has been based on differentiated workloads allowing us to generate different execution profiles in terms of, e.g., granularity/locality of the simulation events. © 2012 IEEE

    On a Catalogue of Metrics for Evaluating Commercial Cloud Services

    Full text link
    Given the continually increasing amount of commercial Cloud services in the market, evaluation of different services plays a significant role in cost-benefit analysis or decision making for choosing Cloud Computing. In particular, employing suitable metrics is essential in evaluation implementations. However, to the best of our knowledge, there is not any systematic discussion about metrics for evaluating Cloud services. By using the method of Systematic Literature Review (SLR), we have collected the de facto metrics adopted in the existing Cloud services evaluation work. The collected metrics were arranged following different Cloud service features to be evaluated, which essentially constructed an evaluation metrics catalogue, as shown in this paper. This metrics catalogue can be used to facilitate the future practice and research in the area of Cloud services evaluation. Moreover, considering metrics selection is a prerequisite of benchmark selection in evaluation implementations, this work also supplements the existing research in benchmarking the commercial Cloud services.Comment: 10 pages, Proceedings of the 13th ACM/IEEE International Conference on Grid Computing (Grid 2012), pp. 164-173, Beijing, China, September 20-23, 201
    • …
    corecore