1,647 research outputs found

    Exploiting Map Topology Knowledge for Context-predictive Multi-interface Car-to-cloud Communication

    Full text link
    While the automotive industry is currently facing a contest among different communication technologies and paradigms about predominance in the connected vehicles sector, the diversity of the various application requirements makes it unlikely that a single technology will be able to fulfill all given demands. Instead, the joint usage of multiple communication technologies seems to be a promising candidate that allows benefiting from characteristical strengths (e.g., using low latency direct communication for safety-related messaging). Consequently, dynamic network interface selection has become a field of scientific interest. In this paper, we present a cross-layer approach for context-aware transmission of vehicular sensor data that exploits mobility control knowledge for scheduling the transmission time with respect to the anticipated channel conditions for the corresponding communication technology. The proposed multi-interface transmission scheme is evaluated in a comprehensive simulation study, where it is able to achieve significant improvements in data rate and reliability

    Regulatory and Policy Implications of Emerging Technologies to Spectrum Management

    Get PDF
    This paper provides an overview of the policy implications of technological developments, and how these technologies can accommodate an increased level of market competition. It is based on the work carried out in the SPORT VIEWS (Spectrum Policies and Radio Technologies Viable In Emerging Wireless Societies) research project for the European Commission (FP6)spectrum, new radio technologies, UWB, SDR, cognitive radio, Telecommunications, regulation, Networks, Interconnection

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Experimental Evaluation of a Low-Cost Digital Sign-Posts Architecture for ITS Applications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-40509-4_21Integrating road signs information is becoming a critical goal for Intelligent Transportation Systems (ITS). Unlike other driving automation features, this capacity requires not only the vehicle, but also posts and infrastructure to be adapted thus involving an investment that can only be justified by a substantial number of users. In this paper we describe an architecture that aims to facilitate the introduction and deployment of this technology based on low cost devices as the digital sign-posts and the integration of smartphones as an alternative in-vehicle user-interface. Wireless communications based on IEEE 802.11 is used for the basic connectivity requirements. From the results obtained through an experimental evaluation, we show that, despite the smartphone constraints, we can achieve successful detection and recognition experiences at up to 90 km/h. Ultimately the experiment described confirms that the use of smartphones represents an opportunity to expand wireless technology in the traffic sign digitalisation area.This work was partially supported by the Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R.Fernandez Laguía, CJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2016). Experimental Evaluation of a Low-Cost Digital Sign-Posts Architecture for ITS Applications. En Ad-hoc, Mobile, and Wireless Networks. Springer. 294-307. https://doi.org/10.1007/978-3-319-40509-4_21S294307Alkim, T.P., Bootsma, G., Hoogendoorn, S.P.: Field operational test the assisted driver. In: IEEE 2007 Intelligent Vehicles Symposium, pp. 1198–1203. IEEE, Istanbul (2007)Trübswetter, N., Bengler, K.: Why should i use ADAS? Advanced driver assistance systems and the elderly: knowledge, experience and usage barriers. In: Proceedings of the 7th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 495–501. Bolton Landing, New York (2013)Maenpaa, K., Sukuvaara, T., Ylitalo, R., Nurmi, P., Atlaskin, E.: Road weather station acting as a wireless service hotspot for vehicles. In: 2013 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 159–162. IEEE, Cluj-Napoca (2013)Djahel, S., Smith, N., Wang, S., Murphy, J.: Reducing emergency services response time in smart cities: an advanced adaptive and fuzzy approach. In: 2015 IEEE First International Smart Cities Conference (ISC2), pp. 1–8. IEEE, Guadalajara (2015)Yoshimichi, S., Koji, M.: Development and evaluation of in-vehicle signing system utilizing RFID tags as digital traffic signs. Int. J. ITS Res. 4(1), 53–58 (2006)Pérez, J., Seco, F., Milanés, V., Jiménez, A., Díaz, J.C., De Pedro, T.: An RFID-based intelligent vehicle speed controller using active traffic signals. Sensors 10(6), 5872–5887 (2010)Naja, R.: Wireless Vehicular Networks for Car Collision Avoidance. Springer, New York (2013)Huang, W., Zhongdong, Y., Zhu, F., Yang, L., Wang, F. Y.: Applicability of short range wireless networks in V2I applications. In: 2013 16th International IEEE Conference on Intelligent Transportation Systems-(ITSC), pp. 231–236. IEEE, The Hage (2013)ETSI, TCITS: Intelligent Transport Systems (ITS); European profile standard on the physical and medium access layer of 5 GHz ITS. Draft ETSI ES 202.663 (2009): V0Murray, D., Dixon, M., Koziniec, T.: Scanning delays in 802.11 networks. In: The 2007 International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST 2007), pp. 255–260. IEEE, Cardiff (2007)Brouwers, N., Zuniga, M., Langendoen, K.: Incremental wi-fi scanning for energy-efficient localization. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 156–162. IEEE, Budapest (2014)Choi, P., Gao, J., Ramanathan, N., Mao, M., Xu, S., Boon, C.C., Fahmy, S.A., Peh, L.S.: A case for leveraging 802.11 p for direct phone-to-phone communications. In: Proceedings of the 2014 International Symposium on Low Power Electronics and Design, pp. 207–212. ACM, La Jolla (2014
    • …
    corecore