287,856 research outputs found

    Unsupervised Video Understanding by Reconciliation of Posture Similarities

    Full text link
    Understanding human activity and being able to explain it in detail surpasses mere action classification by far in both complexity and value. The challenge is thus to describe an activity on the basis of its most fundamental constituents, the individual postures and their distinctive transitions. Supervised learning of such a fine-grained representation based on elementary poses is very tedious and does not scale. Therefore, we propose a completely unsupervised deep learning procedure based solely on video sequences, which starts from scratch without requiring pre-trained networks, predefined body models, or keypoints. A combinatorial sequence matching algorithm proposes relations between frames from subsets of the training data, while a CNN is reconciling the transitivity conflicts of the different subsets to learn a single concerted pose embedding despite changes in appearance across sequences. Without any manual annotation, the model learns a structured representation of postures and their temporal development. The model not only enables retrieval of similar postures but also temporal super-resolution. Additionally, based on a recurrent formulation, next frames can be synthesized.Comment: Accepted by ICCV 201

    Drawing and images of design: representation and meaning

    Get PDF
    This abstract is based on the research being conducted on the relationship between design and drawing, whose results have been presented at various congresses. The aim of the research is to clarify the intervention of drawing in design, by differentiating between “object” and “image” and between the “symbolic character” and the “form of representation” by demonstrating that the efficiency of the project is based on conflict generated by the act of drawing in itself. Based on the triangular classification of design as author-programme- technology and drawing as representation- classification-imagination, it can be argued that: the object’s identity arises from the confrontation between representation and the image, thus questioning its unity. In other words the way of representing the object through a technical mediation referring to an abstract concept (the act of drawing), of symbolic function, and of attributing meaning to the symbol, insofar as it refers to object. This paper intends to approach drawing as the language that makes the appearance of the images of design possible. The images of design function as double: _ object of representation whilst represented image (physical representation); _object of desire whilst promoter of a story of subjective experiences and emotional relationships. Examples will be given. We consider the specificity of drawing through two possibilities: _representation as the action of drawing in the object’s presence; _representation as the action of drawing in the object’s absence. Drawing as a instrument of the project participates in the duality of the images: as representation of the idea (concept) and as action that provokes the emergence of the object before an interested and desiring subject. However, under these conditions, drawing exists as an action that does not dilute itself in the representation, since object and image, as differentiated and implied entities, relate to each other. Drawing is the place where the object’s necessary differentiation and uncertainty manifest themselves

    Modeling Shape, Appearance and Motion for Human Movement Analysis

    Get PDF
    Shape, Appearance and Motion are the most important cues for analyzing human movements in visual surveillance. Representation of these visual cues should be rich, invariant and discriminative. We present several approaches to model and integrate them for human detection and segmentation, person identification, and action recognition. First, we describe a hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-based schemes. For learning generic human detectors, a pose-adaptive representation is developed based on a hierarchical tree matching scheme and combined with an support vector machine classifier to perform human/non-human classification. We also formulate multiple occluded human detection using a Bayesian framework and optimize it through an iterative process. We evaluated the approach on several public pedestrian datasets. Second, given regions of interest provided by human detectors, we introduce an approach to iteratively estimates segmentation via a generalized Expectation-Maximization algorithm. The approach incorporates local Markov random field constraints and global pose inferences to propagate beliefs over image space iteratively to determine a coherent segmentation. Additionally, a layered occlusion model and a probabilistic occlusion reasoning scheme are introduced to handle inter-occlusion. The approach is tested on a wide variety of real-life images. Third, we describe an approach to appearance-based person recognition. In learning, we perform discriminative analysis through pairwise coupling of training samples, and estimate a set of normalized invariant profiles by marginalizing likelihood ratio functions which reflect local appearance differences. In recognition, we calculate discriminative information-based distances by a soft voting approach, and combine them with appearance-based distances for nearest neighbor classification. We evaluated the approach on videos of 61 individuals under significant illumination and viewpoint changes. Fourth, we describe a prototype-based approach to action recognition. During training, a set of action prototypes are learned in a joint shape and motion space via kk-means clustering; During testing, humans are tracked while a frame-to-prototype correspondence is established by nearest neighbor search, and then actions are recognized using dynamic prototype sequence matching. Similarity matrices used for sequence matching are efficiently obtained by look-up table indexing. We experimented the approach on several action datasets

    3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold

    Get PDF
    International audienceRecognizing human actions in 3D video sequences is an important open problem that is currently at the heart of many research domains including surveillance, natural interfaces and rehabilitation. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance. In this paper, we propose a new framework to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition. The proposed solution develops on fitting a human skeleton model to acquired data so as to represent the 3D coordinates of the joints and their change over time as a trajectory in a suitable action space. Thanks to such a 3D joint-based framework, the proposed solution is capable to capture both the shape and the dynamics of the human body simultaneously. The action recognition problem is then formulated as the problem of computing the similarity between the shape of trajectories in a Riemannian manifold. Classification using kNN is finally performed on this manifold taking advantage of Riemannian geometry in the open curve shape space. Experiments are carried out on four representative benchmarks to demonstrate the potential of the proposed solution in terms of accuracy/latency for a low-latency action recognition. Comparative results with state-of-the-art methods are reported
    corecore