926 research outputs found

    Tiling Problems on Baumslag-Solitar groups

    Full text link
    We exhibit a weakly aperiodic tile set for Baumslag-Solitar groups, and prove that the domino problem is undecidable on these groups. A consequence of our construction is the existence of an arecursive tile set on Baumslag-Solitar groups.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Fixed Parameter Undecidability for Wang Tilesets

    Full text link
    Deciding if a given set of Wang tiles admits a tiling of the plane is decidable if the number of Wang tiles (or the number of colors) is bounded, for a trivial reason, as there are only finitely many such tilesets. We prove however that the tiling problem remains undecidable if the difference between the number of tiles and the number of colors is bounded by 43. One of the main new tool is the concept of Wang bars, which are equivalently inflated Wang tiles or thin polyominoes.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Aperiodic Subshifts of Finite Type on Groups

    Get PDF
    In this note we prove the following results: \bullet If a finitely presented group GG admits a strongly aperiodic SFT, then GG has decidable word problem. More generally, for f.g. groups that are not recursively presented, there exists a computable obstruction for them to admit strongly aperiodic SFTs. \bullet On the positive side, we build strongly aperiodic SFTs on some new classes of groups. We show in particular that some particular monster groups admits strongly aperiodic SFTs for trivial reasons. Then, for a large class of group GG, we show how to build strongly aperiodic SFTs over Z×G\mathbb{Z}\times G. In particular, this is true for the free group with 2 generators, Thompson's groups TT and VV, PSL2(Z)PSL_2(\mathbb{Z}) and any f.g. group of rational matrices which is bounded.Comment: New version. Adding results about monster group

    Microstructural enrichment functions based on stochastic Wang tilings

    Full text link
    This paper presents an approach to constructing microstructural enrichment functions to local fields in non-periodic heterogeneous materials with applications in Partition of Unity and Hybrid Finite Element schemes. It is based on a concept of aperiodic tilings by the Wang tiles, designed to produce microstructures morphologically similar to original media and enrichment functions that satisfy the underlying governing equations. An appealing feature of this approach is that the enrichment functions are defined only on a small set of square tiles and extended to larger domains by an inexpensive stochastic tiling algorithm in a non-periodic manner. Feasibility of the proposed methodology is demonstrated on constructions of stress enrichment functions for two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first revie
    corecore