199 research outputs found

    Convergence analysis of the unscented Kalman filter for filtering noisy chaotic signals

    Get PDF
    Author name used in this publication: Chi K. TseRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Velocity measurement based on inertial measuring unit

    Get PDF
    Vehicles technology have been a priority area of research over the last few decades. With the increasing the use of electronic components in the automotive industry to measure conditions around the vehicle, the focus of automotive technology development is now leading to the development of active technology. Information on the speed of conventional vehicles is generally still obtained based on the rotation of the wheel, but there are weakness in the system that is the diference between wheel and road through vehicle also changes wheel radius of the vehicle due to wind tube air preasure that can change at any time. In this research used Inertial Measuring Unit (IMU) 6 axis (accelerometer and gyroscope) which have been done filtering by using Kalman filter in order to make output sensor value more stable, results obtained at the test of 0 m/s had an RMS error of 0.8696 m/s when elevation is +450; 0.0393 m/s when elevation is 00; and 0.3030 m/s when elevation is -450. this research is expected to be an exploration for the development of a decent system that is suitable to be used as vehicle speed estimator which is as reliable as it is by using an existing speedometer on a ground vehicle generally regardless of slippage and changes in wind capacity on wheels

    Novel Approaches for State of Charge Modeling in Battery Management Systems

    Get PDF
    One of the key steps of any battery management system design is the representation of the open circuit voltage (OCV) as a function of the state of charge (SOC). The OCV-SOC relationship is very non-linear that is often represented using a polynomial that has log and inverse terms that are not defined around SOC equal to zero or one. The traditional response to this problem was only at the software level. In this thesis, I present a formal scaling approach to the OCV-SOC characterization in Li-ion batteries. I show that, through formal modeling and optimization, the traditional approach to OCV-SOC modeling can be significantly improved by selecting the proper value of ϵ\epsilon. When the proposed technique is used a decrease in the maximum SOC error of 9\% is reported. The proposed approach is tested on data collected from multiple cells over various temperatures for OCV-SOC characterization and the results are presented. State-space model (SSM) and the Kalman filter have several applications in the emerging areas of automation and data science including in battery SOC estimation. In many such applications, the application of Kalman filtering requires model identification with the help of the observed data. I present the formulas with derivations for linear state-space model parameter estimation using the expectation maximization (EM) algorithm. Particularly, I derive the formulas for different special SSM cases of practical interest, such as the continuous white noise acceleration (CWNA) model. Through simulation, I show the benefits of these derivations for the special models in comparison with the generalized approach

    Predicting flow reversals in chaotic natural convection using data assimilation

    Full text link
    A simplified model of natural convection, similar to the Lorenz (1963) system, is compared to computational fluid dynamics simulations in order to test data assimilation methods and better understand the dynamics of convection. The thermosyphon is represented by a long time flow simulation, which serves as a reference "truth". Forecasts are then made using the Lorenz-like model and synchronized to noisy and limited observations of the truth using data assimilation. The resulting analysis is observed to infer dynamics absent from the model when using short assimilation windows. Furthermore, chaotic flow reversal occurrence and residency times in each rotational state are forecast using analysis data. Flow reversals have been successfully forecast in the related Lorenz system, as part of a perfect model experiment, but never in the presence of significant model error or unobserved variables. Finally, we provide new details concerning the fluid dynamical processes present in the thermosyphon during these flow reversals

    Automatic Quality Control and Enhancement for Voice-Based Remote Parkinson’s Disease Detection

    Get PDF
    The performance of voice-based Parkinson’s disease (PD) detection systems degrades when there is an acoustic mismatch between training and operating conditions caused mainly by degradation in test signals. In this paper, we address this mismatch by considering three types of degradation commonly encountered in remote voice analysis, namely background noise, reverberation and nonlinear distortion, and investigate how these degradations influence the performance of a PD detection system. Given that the specific degradation is known, we explore the effectiveness of a variety of enhancement algorithms in compensating this mismatch and improving the PD detection accuracy. Then, we propose two approaches to automatically control the quality of recordings by identifying the presence and type of short-term and long-term degradations and protocol violations in voice signals. Finally, we experiment with using the proposed quality control methods to inform the choice of enhancement algorithm. Experimental results using the voice recordings of the mPower mobile PD data set under different degradation conditions show the effectiveness of the quality control approaches in selecting an appropriate enhancement method and, consequently, in improving the PD detection accuracy. This study is a step towards the development of a remote PD detection system capable of operating in unseen acoustic environments

    Modeling diversity by strange attractors with application to temporal pattern recognition

    Get PDF
    This thesis belongs to the general discipline of establishing black-box models from real-word data, more precisely, from measured time-series. This is an old subject and a large amount of papers and books has been written about it. The main difficulty is to express the diversity of data that has essentially the same origin without creating confusion with data that has a different origin. Normally, the diversity of time-series is modeled by a stochastic process, such as filtered white noise. Often, it is reasonable to assume that the time series is generated by a deterministic dynamical system rather than a stochastic process. In this case, the diversity of the data is expressed by the variability of the parameters of the dynamical system. The parameter variability itself is then, once again, modeled by a stochastic process. In both cases the diversity is generated by some form of exogenous noise. In this thesis a further step has been taken. A single chaotic dynamical system is used to model the data and their diversity. Indeed, a chaotic system produces a whole family of trajectories that are different but nonetheless very similar. It is believed that chaotic dynamics not only are a convenient means to represent diversity but that in many cases the origin of diversity stems actually from chaotic dynamic. Since the approach of this thesis explores completely new grounds the most suitable kind of data is considered, namely approximately periodic signals. In nature such time-series are rather common, in particular the physiological signal of living beings, such as the electrocardiograms (ECG), parts of speech signals, electroencephalograms (EEG), etc. Since there are strong arguments in favor of the chaotic nature of these signals, they appear to be the best candidates for modeling diversity by chaos. It should be stressed however, that the modeling approach pursued in this thesis is thought to be quite general and not limited to signals produced by chaotic dynamics in nature. The intended application of the modeling effort in this thesis is temporal signal classification. The reason for this is twofold. Firstly, classification is one of the basic building block of any cognitive system. Secondly, the recently studied phenomenon of synchronization of chaotic systems suggests a way to test a signal against its chaotic model. The essential content of this work can now be formulated as follows. Thesis: The diversity of approximately periodic signals found in nature can be modeled by means of chaotic dynamics. This kind of modeling technique, together with selective properties of the synchronization of chaotic systems, can be exploited for pattern recognition purposes. This Thesis is advocated by means of the following five points. Models of randomness (Chapter 2) It is argued that the randomness observed in nature is not necessarily the result of exogenous noise, but it could be endogenally generated by deterministic chaotic dynamics. The diversity of real signals is compared with signals produced by the most common chaotic systems. Qualitative resonance (Chapter 3) The behavior of chaotic systems forced by periodic or approximately periodic input signals is studied theoretically and by numerical simulation. It is observed that the chaotic system "locks" approximately to an input signal that is related to its internal chaotic dynamic. In contrast to this, its chaotic behavior is reinforced when the input signal has nothing to do with its internal dynamics. This new phenomenon is called "qualitative resonance". Modeling and recognizing (Chapter 4) In this chapter qualitative resonance is used for pattern recognition. The core of the method is a chaotic dynamical system that is able to reproduce the class of time-series that is to be recognized. This model is excited in a suitable way by an input signal such that qualitative resonance is realized. This means that if the input signal belongs to the modeled class of time-series, the system approximately "locks" into it. If not, the trajectory of the system and the input signal remain unrelated. Automated design of the recognizer (Chapters 5 and 6) For the kind of signals considered in this thesis a systematic design method of the recognizer is presented. The model used is a system of Lur'e type, i.e. a model where the linear dynamic and nonlinear static part are separated. The identification of the model parameters from the given data proceed iteratively, adapting in turn the linear and the nonlinear part. Thus, the difficult nonlinear dynamical system identification task is decomposed into the easier problems of linear dynamical and nonlinear static system identification. The way to apply the approximately periodic input signal in order to realize qualitative resonance is chosen with the help of periodic control theory. Validation (Chapter 7) The pattern recognition method has been validated on the following examples — A synthetic example — Laboratory measurement from Colpitts oscillator — ECG — EEG — Vowels of a speech signals In the first four cases a binary classification and in the last example a classification with five classes was performed. To the best of the knowledge of the author the recognition method is original. Chaotic systems have been already used to produce pseudo-noise and to model signal diversity. Also, parameter identification of chaotic systems has been already carried out. However, the direct establishment of the model from the given data and its subsequent use for classification based on the phenomenon of qualitative resonance is entirely new
    corecore