2,602 research outputs found

    Extending uncertainty formalisms to linear constraints and other complex formalisms

    Get PDF
    Linear constraints occur naturally in many reasoning problems and the information that they represent is often uncertain. There is a difficulty in applying AI uncertainty formalisms to this situation, as their representation of the underlying logic, either as a mutually exclusive and exhaustive set of possibilities, or with a propositional or a predicate logic, is inappropriate (or at least unhelpful). To overcome this difficulty, we express reasoning with linear constraints as a logic, and develop the formalisms based on this different underlying logic. We focus in particular on a possibilistic logic representation of uncertain linear constraints, a lattice-valued possibilistic logic, an assumption-based reasoning formalism and a Dempster-Shafer representation, proving some fundamental results for these extended systems. Our results on extending uncertainty formalisms also apply to a very general class of underlying monotonic logics

    Media fusion and future TV: Examining multi-screen TV convergence in Singapore

    Get PDF
    This study examines Singapore's national media blueprint and industry stakeholders' coping strategies in response to multi-screen TV development. The findings show Singapore muti-screen TV development is still at a nascent stage after launching Media Fushion and FutureTV plans in mid 2009. The policymakers play a key role to follow national media blueprint to unify the inter-industry and cross-country collaboration. TV operators and telcos are found to remediate themselves by harnessing the power of internet and mobile technologies for content innovation and distribution. To tackle the complicated convergent issues in multi-screen TV industry, this study proposes to separately regulate the technology-neutral platforms and diverse audiovisual content. It also recommends a pro-innovative policy with the light-touch licensing scheme and loose content regulation to facilitate the development of the next TV. --three-screen TV,multi-screen TV,convergence,media fusion,IPTV,mobile TV,cross-platform,TV technologies,TV market,TV policy

    Uncertain linear constraints

    Get PDF
    Linear constraints occur naturally in many reasoning problems and the information that they represent is often uncertain. There is a difficulty in applying many AI uncertainty formalisms to this situation, as their representation of the underlying logic, either as a mutually exclusive and exhaustive set of possibilities, or with a propositional or a predicate logic, is inappropriate (or at least unhelpful). To overcome this, we express reasoning with linear constraints as a logic, and develop the formalisms based on this different underlying logic. We focus in particular on a possibilistic logic representation of uncertain linear constraints, a lattice-valued possibilistic logic, and a Dempster-Shafer representation

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    LOGIC AND CONSTRAINT PROGRAMMING FOR COMPUTATIONAL SUSTAINABILITY

    Get PDF
    Computational Sustainability is an interdisciplinary field that aims to develop computational and mathematical models and methods for decision making concerning the management and allocation of resources in order to help solve environmental problems. This thesis deals with a broad spectrum of such problems (energy efficiency, water management, limiting greenhouse gas emissions and fuel consumption) giving a contribution towards their solution by means of Logic Programming (LP) and Constraint Programming (CP), declarative paradigms from Artificial Intelligence of proven solidity. The problems described in this thesis were proposed by experts of the respective domains and tested on the real data instances they provided. The results are encouraging and show the aptness of the chosen methodologies and approaches. The overall aim of this work is twofold: both to address real world problems in order to achieve practical results and to get, from the application of LP and CP technologies to complex scenarios, feedback and directions useful for their improvement

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems
    • …
    corecore