19 research outputs found

    Analyse d’images de documents patrimoniaux : une approche structurelle à base de texture

    Get PDF
    Over the last few years, there has been tremendous growth in digitizing collections of cultural heritage documents. Thus, many challenges and open issues have been raised, such as information retrieval in digital libraries or analyzing page content of historical books. Recently, an important need has emerged which consists in designing a computer-aided characterization and categorization tool, able to index or group historical digitized book pages according to several criteria, mainly the layout structure and/or typographic/graphical characteristics of the historical document image content. Thus, the work conducted in this thesis presents an automatic approach for characterization and categorization of historical book pages. The proposed approach is applicable to a large variety of ancient books. In addition, it does not assume a priori knowledge regarding document image layout and content. It is based on the use of texture and graph algorithms to provide a rich and holistic description of the layout and content of the analyzed book pages to characterize and categorize historical book pages. The categorization is based on the characterization of the digitized page content by texture, shape, geometric and topological descriptors. This characterization is represented by a structural signature. More precisely, the signature-based characterization approach consists of two main stages. The first stage is extracting homogeneous regions. Then, the second one is proposing a graph-based page signature which is based on the extracted homogeneous regions, reflecting its layout and content. Afterwards, by comparing the different obtained graph-based signatures using a graph-matching paradigm, the similarities of digitized historical book page layout and/or content can be deduced. Subsequently, book pages with similar layout and/or content can be categorized and grouped, and a table of contents/summary of the analyzed digitized historical book can be provided automatically. As a consequence, numerous signature-based applications (e.g. information retrieval in digital libraries according to several criteria, page categorization) can be implemented for managing effectively a corpus or collections of books. To illustrate the effectiveness of the proposed page signature, a detailed experimental evaluation has been conducted in this work for assessing two possible categorization applications, unsupervised page classification and page stream segmentation. In addition, the different steps of the proposed approach have been evaluated on a large variety of historical document images.Les récents progrès dans la numérisation des collections de documents patrimoniaux ont ravivé de nouveaux défis afin de garantir une conservation durable et de fournir un accès plus large aux documents anciens. En parallèle de la recherche d'information dans les bibliothèques numériques ou l'analyse du contenu des pages numérisées dans les ouvrages anciens, la caractérisation et la catégorisation des pages d'ouvrages anciens a connu récemment un regain d'intérêt. Les efforts se concentrent autant sur le développement d'outils rapides et automatiques de caractérisation et catégorisation des pages d'ouvrages anciens, capables de classer les pages d'un ouvrage numérisé en fonction de plusieurs critères, notamment la structure des mises en page et/ou les caractéristiques typographiques/graphiques du contenu de ces pages. Ainsi, dans le cadre de cette thèse, nous proposons une approche permettant la caractérisation et la catégorisation automatiques des pages d'un ouvrage ancien. L'approche proposée se veut indépendante de la structure et du contenu de l'ouvrage analysé. Le principal avantage de ce travail réside dans le fait que l'approche s'affranchit des connaissances préalables, que ce soit concernant le contenu du document ou sa structure. Elle est basée sur une analyse des descripteurs de texture et une représentation structurelle en graphe afin de fournir une description riche permettant une catégorisation à partir du contenu graphique (capturé par la texture) et des mises en page (représentées par des graphes). En effet, cette catégorisation s'appuie sur la caractérisation du contenu de la page numérisée à l'aide d'une analyse des descripteurs de texture, de forme, géométriques et topologiques. Cette caractérisation est définie à l'aide d'une représentation structurelle. Dans le détail, l'approche de catégorisation se décompose en deux étapes principales successives. La première consiste à extraire des régions homogènes. La seconde vise à proposer une signature structurelle à base de texture, sous la forme d'un graphe, construite à partir des régions homogènes extraites et reflétant la structure de la page analysée. Cette signature assure la mise en œuvre de nombreuses applications pour gérer efficacement un corpus ou des collections de livres patrimoniaux (par exemple, la recherche d'information dans les bibliothèques numériques en fonction de plusieurs critères, ou la catégorisation des pages d'un même ouvrage). En comparant les différentes signatures structurelles par le biais de la distance d'édition entre graphes, les similitudes entre les pages d'un même ouvrage en termes de leurs mises en page et/ou contenus peuvent être déduites. Ainsi de suite, les pages ayant des mises en page et/ou contenus similaires peuvent être catégorisées, et un résumé/une table des matières de l'ouvrage analysé peut être alors généré automatiquement. Pour illustrer l'efficacité de la signature proposée, une étude expérimentale détaillée a été menée dans ce travail pour évaluer deux applications possibles de catégorisation de pages d'un même ouvrage, la classification non supervisée de pages et la segmentation de flux de pages d'un même ouvrage. En outre, les différentes étapes de l'approche proposée ont donné lieu à des évaluations par le biais d'expérimentations menées sur un large corpus de documents patrimoniaux

    Spotting Keywords in Offline Handwritten Documents Using Hausdorff Edit Distance

    Get PDF
    Keyword spotting has become a crucial topic in handwritten document recognition, by enabling content-based retrieval of scanned documents using search terms. With a query keyword, one can search and index the digitized handwriting which in turn facilitates understanding of manuscripts. Common automated techniques address the keyword spotting problem through statistical representations. Structural representations such as graphs apprehend the complex structure of handwriting. However, they are rarely used, particularly for keyword spotting techniques, due to high computational costs. The graph edit distance, a powerful and versatile method for matching any type of labeled graph, has exponential time complexity to calculate the similarities of graphs. Hence, the use of graph edit distance is constrained to small size graphs. The recently developed Hausdorff edit distance algorithm approximates the graph edit distance with quadratic time complexity by efficiently matching local substructures. This dissertation speculates using Hausdorff edit distance could be a promising alternative to other template-based keyword spotting approaches in term of computational time and accuracy. Accordingly, the core contribution of this thesis is investigation and development of a graph-based keyword spotting technique based on the Hausdorff edit distance algorithm. The high representational power of graphs combined with the efficiency of the Hausdorff edit distance for graph matching achieves remarkable speedup as well as accuracy. In a comprehensive experimental evaluation, we demonstrate the solid performance of the proposed graph-based method when compared with state of the art, both, concerning precision and speed. The second contribution of this thesis is a keyword spotting technique which incorporates dynamic time warping and Hausdorff edit distance approaches. The structural representation of graph-based approach combined with statistical geometric features representation compliments each other in order to provide a more accurate system. The proposed system has been extensively evaluated with four types of handwriting graphs and geometric features vectors on benchmark datasets. The experiments demonstrate a performance boost in which outperforms individual systems

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available
    corecore