753 research outputs found

    Diogene-CT: tools and methodologies for teaching and learning coding

    Get PDF
    Computational thinking is the capacity of undertaking a problem-solving process in various disciplines (including STEM, i.e. science, technology, engineering and mathematics) using distinctive techniques that are typical of computer science. It is nowadays considered a fundamental skill for students and citizens, that has the potential to affect future generations. At the roots of computational-thinking abilities stands the knowledge of computer programming, i.e. coding. With the goal of fostering computational thinking in young students, we address the challenging and open problem of using methods, tools and techniques to support teaching and learning of computer-programming skills in school curricula of the secondary grade and university courses. This problem is made complex by several factors. In fact, coding requires abstraction capabilities and complex cognitive skills such as procedural and conditional reasoning, planning, and analogical reasoning. In this paper, we introduce a new paradigm called ACME (ā€œCode Animation by Evolved Metaphorsā€) that stands at the foundation of the Diogene-CT code visualization environment and methodology. We develop consistent visual metaphors for both procedural and object-oriented programming. Based on the metaphors, we introduce a playground architecture to support teaching and learning of the principles of coding. To the best of our knowledge, this is the first scalable code visualization tool using consistent metaphors in the field of the Computing Education Research (CER). It might be considered as a new kind of tools named as code visualization environments

    Diogene-CT: tools and methodologies for teaching and learning coding

    Get PDF
    AbstractComputational thinking is the capacity of undertaking a problem-solving process in various disciplines (including STEM, i.e. science, technology, engineering and mathematics) using distinctive techniques that are typical of computer science. It is nowadays considered a fundamental skill for students and citizens, that has the potential to affect future generations. At the roots of computational-thinking abilities stands the knowledge of computer programming, i.e. coding. With the goal of fostering computational thinking in young students, we address the challenging and open problem of using methods, tools and techniques to support teaching and learning of computer-programming skills in school curricula of the secondary grade and university courses. This problem is made complex by several factors. In fact, coding requires abstraction capabilities and complex cognitive skills such as procedural and conditional reasoning, planning, and analogical reasoning. In this paper, we introduce a new paradigm called ACME ("Code Animation by Evolved Metaphors") that stands at the foundation of the Diogene-CT code visualization environment and methodology. We develop consistent visual metaphors for both procedural and object-oriented programming. Based on the metaphors, we introduce a playground architecture to support teaching and learning of the principles of coding. To the best of our knowledge, this is the first scalable code visualization tool using consistent metaphors in the field of the Computing Education Research (CER). It might be considered as a new kind of tools named as code visualization environments

    Spice-up your coding lessons with the ACME approach

    Get PDF
    It is nowadays considered a fundamental skill for students and citizens the capacity of undertaking a problem-solving process in various disciplines (including STEM, i.e. science, technology, engineering and mathematics) using distinctive techniques that are typical of computer science. These abilities are usually called Computational Thinking and at the roots of them stands the knowledge of coding. With the goal of encouraging Computational Thinking in young students, we discuss tools and techniques to support the teaching and the learning of coding in school curricula. It is well known that this problem is complex due to the fact that it requires abstraction capabilities and complex cognitive skills such as procedural and conditional reasoning, planning, and analogical reasoning. In this paper, we present ACME (ā€œCode Animation by Evolved Metaphorsā€) that stands at the foundation of the Diogene-CT code visualization environment and methodology. We discuss visual metaphors for both procedural and object-oriented programming. Based on them, we introduce a playground architecture to support teaching and learning of the principles of coding. To the best of our knowledge, this is the first scalable code visualization tool using consistent metaphors in the field of Computing Education Research (CER)

    Proceedings of the Second Program Visualization Workshop, 2002

    Get PDF
    The Program Visualization Workshops aim to bring together researchers who design and construct program visualizations and, above all, educators who use and evaluate visualizations in their teaching. The first workshop took place in July 2000 at Porvoo, Finland. The second workshop was held in cooperation with ACM SIGCSE and took place at HornstrupCentret, Denmark in June 2002, immediately following the ITiCSE 2002 Conference in Aarhus, Denmark

    The Effectiveness of Aural Instructions with Visualisations in E-Learning Environments

    Get PDF
    Based on Mayerā€™s (2001) model for more effective learning by exploiting the brainā€™s dual sensory channels for information processing, this research investigates the effectiveness of using aural instructions together with visualisation in teaching the difficult concepts of data structures to novice computer science students. A small number of previous studies have examined the use of audio and visualisation in teaching and learning environments but none has explored the integration of both technologies in teaching data structures programming to reduce the cognitive load on learnersā€™ working memory. A prototype learning tool, known as the Data Structure Learning (DSL) tool, was developed and used first in a short mini study that showed that, used together with visualisations of algorithms, aural instructions produced faster student response times than did textual instructions. This result suggested that the additional use of the auditory sensory channel did indeed reduce the cognitive load. The tool was then used in a second, longitudinal, study over two academic terms in which students studying the Data Structures module were offered the opportunity to use the DSL approach with either aural or textual instructions. Their use of the approach was recorded by the DSL system and feedback was invited at the end of every visualisation task. The collected data showed that the tool was used extensively by the students. A comparison of the studentsā€™ DSL use with their end-of-year assessment marks revealed that academically weaker students had tended to use the tool most. This suggests that less able students are keen to use any useful and available instrument to aid their understanding, especially of difficult concepts. Both the quantitative data provided by the automatic recording of DSL use and an end-of-study questionnaire showed appreciation by students of the help the tool had provided and enthusiasm for its future use and development. These findings were supported by qualitative data provided by student written feedback at the end of each task, by interviews at the end of the experiment and by interest from the lecturer in integrating use of the tool with the teaching of the module. A variety of suggestions are made for further work and development of the DSL tool. Further research using a control group and/or pre and post tests would be particularly useful

    Critters in the Classroom: A 3D Computer-Game-Like Tool for Teaching Programming to Computer Animation Students

    Get PDF
    The brewing crisis threatening computer science education is a well documented fact. To counter this and to increase enrolment and retention in computer science related degrees, it has been suggested to make programming "more fun" and to offer "multidisciplinary and cross-disciplinary programs" [Carter 2006]. The Computer Visualisation and Animation undergraduate degree at the National Centre for Computer Animation (Bournemouth University) is such a programme. Computer programming forms an integral part of the curriculum of this technical arts degree, and as educators we constantly face the challenge of having to encourage our students to engage with the subject. We intend to address this with our C-Sheep system, a reimagination of the "Karel the Robot" teaching tool [Pattis 1981], using modern 3D computer game graphics that today's students are familiar with. This provides a game-like setting for writing computer programs, using a task-specific set of instructions which allow users to take control of virtual entities acting within a micro world, effectively providing a graphical representation of the algorithms used. Whereas two decades ago, students would be intrigued by a 2D top-down representation of the micro world, the lack of the visual gimmickry found in modern computer games for representing the virtual world now makes it extremely difficult to maintain the interest of students from today's "Plug&Play generation". It is therefore especially important to aim for a 3D game-like representation which is "attractive and highly motivating to today's generation of media-conscious students" [Moskal et al. 2004]. Our system uses a modern, platform independent games engine, capable of presenting a visually rich virtual environment using a state of the art rendering engine of a type usually found in entertainment systems. Our aim is to entice students to spend more time programming, by providing them with an enjoyable experience. This paper provides a discussion of the 3D computer game technology employed in our system and presents examples of how this can be exploited to provide engaging exercises to create a rewarding learning experience for our students

    Object orientation without extending Z

    Get PDF
    The good news of this paper is that without extending Z, we can elegantly specify object-oriented systems, including encapsulation, inheritance and subtype polymorphism (dynamic dispatch). The bad news is that this specification style is rather different to normal Z specifications, more abstract and axiomatic, which means that it is not so well supported by current Z tools such as animators. It also enforces behavioural subtyping, unlike most object-oriented programming languages. This paper explains the proposed style, with examples, and discusses its advantages and disadvantages

    Investigation and development of a tangible technology framework for highly complex and abstract concepts

    Get PDF
    The ubiquitous integration of computer-supported learning tools within the educational domain has led educators to continuously seek effective technological platforms for teaching and learning. Overcoming the inherent limitations of traditional educational approaches, interactive and tangible computing platforms have consequently garnered increased interest in the pursuit of embedding active learning pedagogies within curricula. However, whilst Tangible User Interface (TUI) systems have been successfully developed to edutain children in various research contexts, TUI architectures have seen limited deployment towards more advanced educational pursuits. Thus, in contrast to current domain research, this study investigates the effectiveness and suitability of adopting TUI systems for enhancing the learning experience of abstract and complex computational science and technology-based concepts within higher educational institutions (HEI)s. Based on the proposal of a contextually apt TUI architecture, the research describes the design and development of eight distinct TUI frameworks embodying innovate interactive paradigms through tabletop peripherals, graphical design factors, and active tangible manipulatives. These computationally coupled design elements are evaluated through summative and formative experimental methodologies for their ability to aid in the effective teaching and learning of diverse threshold concepts experienced in computational science. In addition, through the design and adoption of a technology acceptance model for educational technology (TAM4Edu), the suitability of TUI frameworks in HEI education is empirically evaluated across a myriad of determinants for modelling studentsā€™ behavioural intention. In light of the statistically significant results obtained in both academic knowledge gain (Ī¼ = 25.8%) and student satisfaction (Ī¼ = 12.7%), the study outlines the affordances provided through TUI design for various constituents of active learning theories and modalities. Thus, based on an empirical and pedagogical analyses, a set of design guidelines is defined within this research to direct the effective development of TUI design elements for teaching and learning abstract threshold concepts in HEI adaptations

    The use of ALICE, a visual environment for teaching and learning object-oriented programming

    Get PDF
    University students learning object-oriented programming (OOP) encounter many complexities. This study undertook empirical research aimed at analysing learnersā€™ interactions with the Alice visual programming environment, which seeks to engage and motivate learners to grasp concepts of OOP, whilst creating animated movies and video games. A mixed-methods approach was employed, using questionnaire surveys and interviews to investigate learnersā€™ experiences with Alice and their understanding of OOP. Findings indicated that learners lacked problem-solving abilities; were unable to grasp programming concepts on an abstract level and spent insufficient time practicing programming exercises. Alice proved to be an effective tool in helping to address these challenges and in improving learnersā€™ grasp of OOP. Learners found Alice to have good usability. Furthermore, test and exam results revealed a statistically significant difference between performances of learners who had been taught Alice in comparison to similar learners who were not exposed to the Alice intervention.ComputingInformation SystemsM. Sc. (Information systems

    Impact Of A Visual Programming Experience On The Attitude Toward Programming Of Introductory Undergraduate Students

    Get PDF
    Traditionally, textual tools have been utilized to teach basic programming languages and paradigms. Research has shown that students tend to be visual learners. Using flowcharts, students can quickly understand the logic of their programs and visualize the flow of commands in the algorithm. Moreover, applying programming to physical systems through the use of a microcontroller to facilitate this type of learning can spark an interest in students to advance their programming knowledge to create novel applications. This study examined if freshmen college students\u27 attitudes towards programming changed after completing a graphical programming lesson. Various attributes about students\u27 attitudes were examined including confidence, interest, stereotypes, and their belief in the usefulness of acquiring programming skills. The study found that there were no statistically significant differences in attitudes either immediately following the session or after a period of four weeks
    • ā€¦
    corecore