1,298 research outputs found

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    Enhancing cloud security through the integration of deep learning and data mining techniques: A comprehensive review

    Get PDF
    Cloud computing is crucial in all areas of data storage and online service delivery. It adds various benefits to the conventional storage and sharing system, such as simple access, on-demand storage, scalability, and cost savings. The employment of its rapidly expanding technologies may give several benefits in protecting the Internet of Things (IoT) and physical cyber systems (CPS) from various cyber threats, with IoT and CPS providing facilities for people in their everyday lives. Because malware (malware) is on the rise and there is no well-known strategy for malware detection, leveraging the cloud environment to identify malware might be a viable way forward. To avoid detection, a new kind of malware employs complex jamming and packing methods. Because of this, it is very hard to identify sophisticated malware using typical detection methods. The article presents a detailed assessment of cloud-based malware detection technologies, as well as insight into understanding the cloud's use in protecting the Internet of Things and critical infrastructure from intrusions. This study examines the benefits and drawbacks of cloud environments in malware detection, as well as presents a methodology for detecting cloud-based malware using deep learning and data extraction and highlights new research on the issues of propagating existing malware. Finally, similarities and variations across detection approaches will be exposed, as well as detection technique flaws. The findings of this work may be utilized to highlight the current issue being tackled in malware research in the future

    A Survey on Android Malware Detection

    Full text link
    Malwares are spreading around the world and infecting not only the end users but also large organizations and service providers. Android operating system seems to have attracted the most attention from Malicious code writer due to its popularity. Earlier, Signature based detection techniques were used to detect unknown malwares. But it was insufficient because these techniques were not able to detect unknown malwares (0-day attack). To analyze the malwares, static and dynamic techniques are used. Static analysis has advantage of being undetectable, as malware cannot modify its behavior during analysis. Despite number of detections and analysis techniques are in place, high detection accuracy of new malwares are still a critical issue. This survey paper highlights the existing detection and existing analysis methods used for the android Malicious code

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Malware Analysis and Detection on Android: The Big Challenge

    Get PDF
    The popularization of the use of mobile devices, such as smartphones and tablets, has accelerated in recent years, as these devices have experienced a reduction in cost together with an increase in functionality and services availability. In this context, due to its openness and free availability, Android operating system (OS) has become not only a major stakeholder in the market of mobile devices but has also become an attractive target for cybercriminals. In this chapter, we advocate to present some current trends and results in the Android malware analysis and detection research area. We start by briefly describing the Android’s security model, followed by a discussion of the static and dynamic malware analysis techniques in order to provide a general view of the analysis and detection process to the reader. After that, a description of a particular set of software developments, which exemplify some of the discussed techniques, is presented accompanied by a set of practical results. Finally, we draw some conclusions about the future development of the Android malware analysis area. The main contribution of this chapter is a description of the realization of static and dynamic malware analysis techniques and principles that can be automated and mapped to software system tools in order to simplify analyses. Moreover, some details about the use of machine learning algorithms for malware classifications and the use of the hooking software techniques for dynamic analysis execution are provided
    • …
    corecore