4,046 research outputs found

    The challenge of complexity for cognitive systems

    Get PDF
    Complex cognition addresses research on (a) high-level cognitive processes – mainly problem solving, reasoning, and decision making – and their interaction with more basic processes such as perception, learning, motivation and emotion and (b) cognitive processes which take place in a complex, typically dynamic, environment. Our focus is on AI systems and cognitive models dealing with complexity and on psychological findings which can inspire or challenge cognitive systems research. In this overview we first motivate why we have to go beyond models for rather simple cognitive processes and reductionist experiments. Afterwards, we give a characterization of complexity from our perspective. We introduce the triad of cognitive science methods – analytical, empirical, and engineering methods – which in our opinion have all to be utilized to tackle complex cognition. Afterwards we highlight three aspects of complex cognition – complex problem solving, dynamic decision making, and learning of concepts, skills and strategies. We conclude with some reflections about and challenges for future research

    Upright posture and the meaning of meronymy: A synthesis of metaphoric and analytic accounts

    Get PDF
    Cross-linguistic strategies for mapping lexical and spatial relations from body partonym systems to external object meronymies (as in English ‘table leg’, ‘mountain face’) have attracted substantial research and debate over the past three decades. Due to the systematic mappings, lexical productivity and geometric complexities of body-based meronymies found in many Mesoamerican languages, the region has become focal for these discussions, prominently including contrastive accounts of the phenomenon in Zapotec and Tzeltal, leading researchers to question whether such systems should be explained as global metaphorical mappings from bodily source to target holonym or as vector mappings of shape and axis generated “algorithmically”. I propose a synthesis of these accounts in this paper by drawing on the species-specific cognitive affordances of human upright posture grounded in the reorganization of the anatomical planes, with a special emphasis on antisymmetrical relations that emerge between arm-leg and face-groin antinomies cross-culturally. Whereas Levinson argues that the internal geometry of objects “stripped of their bodily associations” (1994: 821) is sufficient to account for Tzeltal meronymy, making metaphorical explanations entirely unnecessary, I propose a more powerful, elegant explanation of Tzeltal meronymic mapping that affirms both the geometric-analytic and the global-metaphorical nature of Tzeltal meaning construal. I do this by demonstrating that the “algorithm” in question arises from the phenomenology of movement and correlative body memories—an experiential ground which generates a culturally selected pair of inverse contrastive paradigm sets with marked and unmarked membership emerging antithetically relative to the transverse anatomical plane. These relations are then selected diagrammatically for the classification of object orientations according to systematic geometric iconicities. Results not only serve to clarify the case in question but also point to the relatively untapped potential that upright posture holds for theorizing the emergence of human cognition, highlighting in the process the nature, origins and theoretical validity of markedness and double scope conceptual integration

    Computer modeling of human decision making

    Get PDF
    Models of human decision making are reviewed. Models which treat just the cognitive aspects of human behavior are included as well as models which include motivation. Both models which have associated computer programs, and those that do not, are considered. Since flow diagrams, that assist in constructing computer simulation of such models, were not generally available, such diagrams were constructed and are presented. The result provides a rich source of information, which can aid in construction of more realistic future simulations of human decision making

    International entrepreneurship : exploring the logic and utility of individual experience through comparative reasoning approaches

    Get PDF
    In this paper, we suggest that individual experience and reasoning, as applied to new endeavors in internationalization, are concepts with high potential to advance conceptual and empirical research in international entrepreneurship (IE). Experience is known to be important in internationalization, but the logic or reasoning with which it is applied is insufficiently understood. Cognitive, comparison-based reasoning theories explain how individuals draw on experience to make sense of uncertain, novel, and complex situations. Drawing on two such theories, heuristics and analogical reasoning, we delineate the logic of experience and advance speculative propositions on its utility in the context of internationalization research

    Concept Blending and Dissimilarity: Factors for Creative Design Process: A Comparison between the Linguistic Interpretation Process and Design Process

    Get PDF
    This study investigated the design process in order to clarify the characteristics of the essence of the creative design process vis-à-vis the interpretation process, by carrying out design experiments. The authors analyzed the characteristics of the creative design process by comparing it with the linguistic interpretation process, from the viewpoints of thought types (analogy, blending, and thematic relation) and recognition types (commonalities and alignable and nonalignable differences). A new concept can be created by using the noun-noun phrase as the process of synthesizing two concepts—the simplest and most essential process in formulating a new concept from existing ones. Furthermore, the noun-noun phrase can be interpreted in a natural way. In our experiment, the subjects were required to interpret a novel noun-noun phrase, create a design concept from the same noun-noun phrase, and list the similarities and dissimilarities between the two nouns. The authors compare the results of the thought types and recognition types, focusing on the perspective of the manner in which things were viewed, i.e., in terms of similarities and dissimilarities. A comparison of the results reveals that blending and nonalignable differences characterize the creative design process. The findings of this research will contribute a framework of design practice, to enhance both students’ and designers’ creativity for concept formation in design, which relates to the development of innovative design. Keywords: Noun-Noun phrase; Design; Creativity; Blending; Nonalignable difference</p

    Modelling the Developing Mind: From Structure to Change

    Get PDF
    This paper presents a theory of cognitive change. The theory assumes that the fundamental causes of cognitive change reside in the architecture of mind. Thus, the architecture of mind as specified by the theory is described first. It is assumed that the mind is a three-level universe involving (1) a processing system that constrains processing potentials, (2) a set of specialized capacity systems that guide understanding of different reality and knowledge domains, and (3) a hypecognitive system that monitors and controls the functioning of all other systems. The paper then specifies the types of change that may occur in cognitive development (changes within the levels of mind, changes in the relations between structures across levels, changes in the efficiency of a structure) and a series of general (e.g., metarepresentation) and more specific mechanisms (e.g., bridging, interweaving, and fusion) that bring the changes about. It is argued that different types of change require different mechanisms. Finally, a general model of the nature of cognitive development is offered. The relations between the theory proposed in the paper and other theories and research in cognitive development and cognitive neuroscience is discussed throughout the paper

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers
    corecore