29,113 research outputs found

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    Far-field prediction using only magnetic near-field scanning and modeling delay variations in CMOS digital logic circuits due to electrical disturbances in the power supply

    Get PDF
    The first topic of this dissertation is far-field prediction using only magnetic near-field scanning. Near-field scanning has been used extensively for the far-field estimation of antennas. Applied to electromagnetic compatibility (EMC) problems, near-field scanning has been used to estimate emissions from both integrated circuits (ICs) and printed circuit boards (PCBs). Interest in applying far-field predictions using near-field to EMI/EMC problems has recently grown. To predict the far-field emissions from a PCB in the top half space, the near-field data on a planar surface above PCB usually is sufficient. However, near-field measurement on only one planar surface may not be enough to predict the far-field radiation of three-dimensional structures. The near-field on an enclosed Huygens\u27s surface may be preferred for near-field scanning when predicting the far-field radiation associated with the EMI problems of some complex structures. Based on the equivalence theorem (Huygens\u27s principle), both equivalent electric current obtained from the tangential magnetic field and equivalent magnetic current obtained from the tangential electric field are needed to perform far-field transformation from near-field data. However, designing electric field probes for tangential components is more difficult than designing magnetic field probes. As a result and in the interest of reducing scan time, far-field transformation based only on magnetic field near-field measurements is preferred. In the first paper, a novel method is proposed to predict the far-field radiation using only the magnetic near-field component on a Huygens\u27s box. The proposed method was verified with two simulated examples and one measurement case. The effect of inaccuracy of magnetic field and the incompleteness of the Huygens\u27s box on far-field results is investigated in this paper. The proposed method can be applied for arbitrary shapes of closed Huygens\u27s surfaces. Only the tangential magnetic field needs to be measured. And it also shows good accuracy and robustness in use. Measuring only the magnetic field cuts the scan time in half. The second topic of this dissertation is modeling delay variations in CMOS digital logic circuits due to electrical disturbances in the power supply. Electronic designers go to considerable effort to minimize the susceptibility of electronic systems against electromagnetic interference. For many systems, the component which fails is an integrated circuit (IC). Susceptibilities are typically found through testing, which is expensive, time consuming, and does not always uncover problems that are encountered in the field. While IC-level testing helps to establish the operational limits of an IC, testing rarely ensures the IC can withstand all interferences, even within the specified limits. Even when a problem is found, the engineer often does not know why a problem was caused or the best way to prevent the problem in the future. Solving problems through trial and error cannot be done as it is at the system level, because of the prohibitive cost of manufacturing and testing multiple versions of the IC. The IC engineer must build the IC to be robust on the first design cycle. IC failures may be caused by a hard failure of the IC, for example, due to latch-up or permanent damage to an I/O pin, or may be caused by a soft failure, where incorrect data is read from I/O, internal logic, and/or memory. Soft errors that occur within the logic and/or memory components of the IC can be particularly difficult to deal with since errors associated with these components are much more diverse and complex than those associated with I/O. One common reason for soft errors is that a change in the power supply voltage causes a change in the propagation delay through internal logic or the clock tree, so that the clock edge arrives at a register before valid data and an incorrect logic value is stored at the register. While methods are available to predict the level of voltage fluctuation within the IC from an external electromagnetic event, predicting when a failure will occur as a result of the event is challenging. Methods are developed in the second paper and third paper to help predict these soft failures, by predicting the change in the propagation delay through logic during an electromagnetic disturbance of the power supply. In the second paper, an analytical delay model was developed to predict propagation delay variations in logic circuits when the power supply is disturbed by an electromagnetic event. Simulated and measured results demonstrate the accuracy of the approach. Four different types of logic circuits were tested, verifying that the proposed delay model can be applied to a wide range of logic circuits and process technologies. Analytical formulas were developed to predict the clock period variation in integrate circuit when the power supply is disturbed by an electromagnetic event in the third paper. The proposed formulas can be seen as a clock jitter model. The clock jitter due to the power supply variation can be estimated by the proposed propagation delay model. It is more meaningful, however, to estimate the clock period variation rather than the delay variation for one clock edge, because it is clock period which affects if a soft error will happen or not. Simulated results using Cadence Virtuoso demonstrate the validity and accuracy of the proposed approach. Three different types of noise were used to disturb the power supply voltage, verifying that the proposed model can be applied to a wide range of disturbance of power supply. Many electromagnetic events cause soft errors in ICs by momentarily disturbing the power supply voltage. The proposed model can be helpful for predicting and understanding the soft errors caused by these timing changes within the logic --Abstract, page iv

    Models predicting the performance of IC component or PCB channel during electromagnetic interference

    Get PDF
    This dissertation is composed of three papers, which cover the prediction of the characteristics of jitter due to crosstalk and due to simultaneous switching noise, and covers susceptibility of delay locked loop (DLL) to electromagnetic interference. In the first paper, an improved tail-fit de-convolution method is proposed for characterizing the impact of deterministic jitter in the presence of random jitter. A Wiener filter de-convolution method is also presented for extracting the characteristics of crosstalk induced jitter from measurements of total jitter made when the crosstalk sources were and were not present. The proposed techniques are shown to work well both in simulations and in measurements of a high-speed link. In the second paper, methods are developed to predict the statistical distribution of timing jitter due to dynamic currents drawn by an integrated circuit (IC) and the resulting power supply noise on the PCB. Distribution of dynamic currents is found through vectorless methods. Results demonstrate the approach can rapidly determine the average and standard deviation of the power supply noise voltage and the peak jitter within 5~15% error, which is more than sufficient for predicting the performance impact on integrated circuits. In the third paper, a model is developed to predict the susceptibility of a DLL to electromagnetic noise on the power supply. With the proposed analytical noise transfer function, peak to peak jitter and cycle to cycle jitter at the DLL output can be estimated, which can be use to predict when soft failures will occur and to better understand how to fix these failures. Simulation and measurement results demonstrate the accuracy of the DLL delay model. --Abstract, page iv

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Offset-calibration with Time-Domain Comparators Using Inversion-mode Varactors

    Get PDF
    This paper presents a differential time-domain comparator formed by two voltage controlled delay lines, one per input terminal, and a binary phase detector for comparison solving. The propagation delay through the respective lines can be adjusted with a set of digitally-controlled inversion-mode varactors. These varactors provide tuning capabilities to the comparator; feature which can be exploited for offset calibration. This is demonstrated with the implementation of a differential 10-bit SAR-ADC. The design, fabricated in a 0.18μm CMOS process, includes an automatic mechanism for adjusting the capacitance of the varactors in order to calibrate the offset of the whole converter. Correct functionality was measured in all samples.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N0001414135

    Statistical circuit simulations - from ‘atomistic’ compact models to statistical standard cell characterisation

    Get PDF
    This thesis describes the development and application of statistical circuit simulation methodologies to analyse digital circuits subject to intrinsic parameter fluctuations. The specific nature of intrinsic parameter fluctuations are discussed, and we explain the crucial importance to the semiconductor industry of developing design tools which accurately account for their effects. Current work in the area is reviewed, and three important factors are made clear: any statistical circuit simulation methodology must be based on physically correct, predictive models of device variability; the statistical compact models describing device operation must be characterised for accurate transient analysis of circuits; analysis must be carried out on realistic circuit components. Improving on previous efforts in the field, we posit a statistical circuit simulation methodology which accounts for all three of these factors. The established 3-D Glasgow atomistic simulator is employed to predict electrical characteristics for devices aimed at digital circuit applications, with gate lengths from 35 nm to 13 nm. Using these electrical characteristics, extraction of BSIM4 compact models is carried out and their accuracy in performing transient analysis using SPICE is validated against well characterised mixed-mode TCAD simulation results for 35 nm devices. Static d.c. simulations are performed to test the methodology, and a useful analytic model to predict hard logic fault limitations on CMOS supply voltage scaling is derived as part of this work. Using our toolset, the effect of statistical variability introduced by random discrete dopants on the dynamic behaviour of inverters is studied in detail. As devices scaled, dynamic noise margin variation of an inverter is increased and higher output load or input slew rate improves the noise margins and its variation. Intrinsic delay variation based on CV/I delay metric is also compared using ION and IEFF definitions where the best estimate is obtained when considering ION and input transition time variations. Critical delay distribution of a path is also investigated where it is shown non-Gaussian. Finally, the impact of the cell input slew rate definition on the accuracy of the inverter cell timing characterisation in NLDM format is investigated
    corecore