242 research outputs found

    Setting the parameters right for two-hop IEEE 802.11e ad hoc networks

    Get PDF
    Two-hop ad-hoc networks, in which some nodes forward traffic for multiple sources, with which they also compete for channel access suffer from large queues building up in bottleneck nodes. This problem can often be alleviated by using IEEE 802.11e to give preferential treatment to bottleneck nodes. Previous results have shown that differentiation parameters can be used to allocate capacity in a more efficient way in the two-hop scenario. However, the overall throughput of the bottleneck may differ considerably, depending on the differentiation method used. By applying a very fast and accurate analysis method, based on steady-state analysis of an QBD-type infinite Markov chain, we find the maximum throughput that is possible per differentiation parameter. All possible parameter settings are explored with respect to the maximum throughput conditioned on a maximum buffer occupancy. This design space exploration cannot be done with network simulators like NS2 or Opnet, as each simulation run simply takes to long.\ud The results, which have been validated by detailed simulations, show that by differentiating TXOP it is possible to achieve a throughput that is about 50% larger than when differentiating AIFS and CW_min.\u

    A Comprehensive Study of the Enhanced Distributed Control Access (EDCA) Function

    Get PDF
    This technical report presents a comprehensive study of the Enhanced Distributed Control Access (EDCA) function defined in IEEE 802.11e. All the three factors are considered. They are: contention window size (CW), arbitration inter-frame space (AIFS), and transmission opportunity limit (TXOP). We first propose a discrete Markov chain model to describe the channel activities governed by EDCA. Then we evaluate the individual as well as joint effects of each factor on the throughput and QoS performance. We obtain several insightful observations showing that judiciously using the EDCA service differentiation mechanism is important to achieve maximum bandwidth utilization and user-specified QoS performance. Guided by our theoretical study, we devise a general QoS framework that provides QoS in an optimal way. The means of realizing the framework in a specific network is yet to be studied

    Throughput Analysis Model for IEEE 802.11e EDCA with Multiple Access Categories

    Get PDF
    IEEE 802.11e standard has been specified to support differentiated quality of service (QoS), one of the critical issues on the conventional IEEE 802.11 wireless local area networks (WLANs). Enhanced Distributed Channel Access (EDCA) is the fundamental and mandatory contention-based channel access method of IEEE 802.11e, and delivers traffic based on differentiated Access Categories (ACs). A general three dimensional Markov chain model of IEEE 802.11e EDCA for performance analysis is proposed in this paper. The analytical model considers multiple stations with an arbitrary number of different ACs. It also differentiates the contention window (CW) sizes and the arbitration interframe spaces (AIFSs), and considers virtual collision mechanism. Based on the model, the saturation throughput of EDCA is derived, and the accuracy of the proposed model is validated via simulations

    A Greedy Reclaiming Scheduler for IEEE 802.11e HCCA Real-Time Networks

    Get PDF
    The IEEE 802.11e standard introduces Quality of Service (QoS) support for wireless local area networks and suggests how to design a tailored HCF Controlled Channel Access (HCCA) scheduler. However the reference scheduling algorithm is suitable to assure service guarantees only for Constant Bit Rate traffic streams, whereas shows its limits for Variable Bit Rate traffic. Despite the numerous alternative schedulers proposed to improve the QoS support for multimedia applications, in the case of VBR traffic satisfactory real-time performance has not been yet achieved. This paper presents a new scheduling algorithm, Unused Time Shifting Scheduler (UTSS). It integrates a mechanism for bandwidth reclaiming into a HCCA real-time scheduler. UTSS assigns the unused portion of each transmission opportunity to the next scheduled traffic stream. Thanks to such feature, traffic variability is absorbed, reducing the waste of resources. The analytical evaluation, corroborated by the simulation results, shows that UTSS is suitable to reduce the delay experienced by VBR traffic streams and to increase the maximum burstiness sustainable by the network

    Analysis of the IEEE 802.11e EDCA Under Statistical Traffic

    Get PDF
    Many models have been proposed to analyze the performance of the IEEE 802.11 distributed coordination function (DCF) and the IEEE 802.11e enhanced distributed coordination function (EDCA) under saturation condition. To analyze DCF under statistical traffic, Foh and Zukerman introduce a model that uses Markovian Framework to compute the throughput and delay performance. In this paper, we analyze the protocol service time of EDCA mechanism and introduce a model to analyze EDCA under statistical traffic using Markovian Framework. Using this model, we analyze the throughput and delay performance of EDCA mechanism under statistical traffic

    Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11e networks

    Get PDF
    The IEEE 802.11e standard introduces Quality of Service support for wireless local area networks through two MAC functions: Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). While the former provides prioritized contention-based access to the medium, the latter uses a parameterized contention-free polling scheme. Several studies have proposed enhancements to EDCA or improved scheduling algorithms for HCCA to properly support VBR traffic. However, the cooperation between these functions has only marginally been considered and the solutions vary depending on specific traffic requirements. In this paper we propose a novel approach to address the problem of scheduling VBR traffic streams. Our scheduler, named Overboost, uses HCCA to negotiate a minimum bandwidth and deals with traffic streams that require more bandwidth than the negotiated one by redirecting the excess bandwidth to the EDCA function. An analytical evaluation has been conducted and the results has been corroborated by an extensive set of simulations. They show that the overall scheduler improves the performance with respect to other HCCA schedulers in terms of null rate, throughput, access delay, and queue length
    • …
    corecore