22 research outputs found

    Queues with Congestion-dependent Feedback

    Get PDF
    This dissertation expands the theory of feedback queueing systems and applies a number of these models to a performance analysis of the Transmission Control Protocol, a flow control protocol commonly used in the Internet

    Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering Infrastructure

    Get PDF
    Utility companies (electricity, gas, and water suppliers), governments, and researchers recognize an urgent need to deploy communication-based systems to automate data collection from smart meters and sensors, known as Smart Metering Infrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering system is envisaged to bring tremendous benefits to customers, utilities, and governments. The advantages include reducing peak demand for energy, supporting the time-of-use concept for billing, enabling customers to make informed decisions, and performing effective load management, to name a few. A key element in an SMI is communications between meters and utility servers. However, the mass deployment of metering devices in the grid calls for studying the scalability of communication protocols. SMI is characterized by the deployment of a large number of small Internet Protocol (IP) devices sending small packets at a low rate to a central server. Although the individual devices generate data at a low rate, the collective traffic produced is significant and is disruptive to network communication functionality. This research work focuses on the scalability of the transport layer functionalities. The TCP congestion control mechanism, in particular, would be ineffective for the traffic of smart meters because a large volume of data comes from a large number of individual sources. This situation makes the TCP congestion control mechanism unable to lower the transmission rate even when congestion occurs. The consequences are a high loss rate for metered data and degraded throughput for competing traffic in the smart metering network. To enhance the performance of TCP in a smart metering infrastructure (SMI), we introduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP). This scheme is based on the idea of upgrading intermediate devices in SMI (known in the industry as regional collectors) to offer the service of aggregating the TCP connections. An SA-TCP aggregator collects data packets from the smart meters of its region over separate TCP connections; then it reliably forwards the data over another TCP connection to the utility server. The proposed split and aggregated scheme provides a better response to traffic conditions and, most importantly, makes the TCP congestion control and flow control mechanisms effective. Supported by extensive ns-2 simulations, we show the effectiveness of the SA-TCP approach to mitigating the problems in terms of the throughput and packet loss rate performance metrics. A full mathematical model of SA-TCP is provided. The model is highly accurate and flexible in predicting the behaviour of the two stages, separately and combined, of the SA-TCP scheme in terms of throughput, packet loss rate and end-to-end delay. Considering the two stages of the scheme, the modelling approach uses Markovian models to represent smart meters in the first stage and SA-TCP aggregators in the second. Then, the approach studies the interaction of smart meters and SA-TCP aggregators with the network by means of standard queuing models. The ns-2 simulations validate the math model results. A comprehensive performance analysis of the SA-TCP scheme is performed. It studies the impact of varying various parameters on the scheme, including the impact of network link capacity, buffering capacity of those RCs that act as SA-TCP aggregators, propagation delay between the meters and the utility server, and finally, the number of SA-TCP aggregators. The performance results show that adjusting those parameters makes it possible to further enhance congestion control in SMI. Therefore, this thesis also formulates an optimization model to achieve better TCP performance and ensures satisfactory performance results, such as a minimal loss rate and acceptable end-to-end delay. The optimization model also considers minimizing the SA-TCP scheme deployment cost by balancing the number of SA-TCP aggregators and the link bandwidth, while still satisfying performance requirements

    Transport Architectures for an Evolving Internet

    Get PDF
    In the Internet architecture, transport protocols are the glue between an application’s needs and the network’s abilities. But as the Internet has evolved over the last 30 years, the implicit assumptions of these protocols have held less and less well. This can cause poor performance on newer networks—cellular networks, datacenters—and makes it challenging to roll out networking technologies that break markedly with the past. Working with collaborators at MIT, I have built two systems that explore an objective-driven, computer-generated approach to protocol design. My thesis is that making protocols a function of stated assumptions and objectives can improve application performance and free network technologies to evolve. Sprout, a transport protocol designed for videoconferencing over cellular networks, uses probabilistic inference to forecast network congestion in advance. On commercial cellular networks, Sprout gives 2-to-4 times the throughput and 7-to-9 times less delay than Skype, Apple Facetime, and Google Hangouts. This work led to Remy, a tool that programmatically generates protocols for an uncertain multi-agent network. Remy’s computer-generated algorithms can achieve higher performance and greater fairness than some sophisticated human-designed schemes, including ones that put intelligence inside the network. The Remy tool can then be used to probe the difficulty of the congestion control problem itself—how easy is it to “learn” a network protocol to achieve desired goals, given a necessarily imperfect model of the networks where it ultimately will be deployed? We found weak evidence of a tradeoff between the breadth of the operating range of a computer-generated protocol and its performance, but also that a single computer-generated protocol was able to outperform existing schemes over a thousand-fold range of link rates

    Self-similar traffic and network dynamics

    Get PDF
    Copyright © 2002 IEEEOne of the most significant findings of traffic measurement studies over the last decade has been the observed self-similarity in packet network traffic. Subsequent research has focused on the origins of this self-similarity, and the network engineering significance of this phenomenon. This paper reviews what is currently known about network traffic self-similarity and its significance. We then consider a matter of current research, namely, the manner in which network dynamics (specifically, the dynamics of transmission control protocol (TCP), the predominant transport protocol used in today's Internet) can affect the observed self-similarity. To this end, we first discuss some of the pitfalls associated with applying traditional performance evaluation techniques to highly-interacting, large-scale networks such as the Internet. We then present one promising approach based on chaotic maps to capture and model the dynamics of TCP-type feedback control in such networks. Not only can appropriately chosen chaotic map models capture a range of realistic source characteristics, but by coupling these to network state equations, one can study the effects of network dynamics on the observed scaling behavior. We consider several aspects of TCP feedback, and illustrate by examples that while TCP-type feedback can modify the self-similar scaling behavior of network traffic, it neither generates it nor eliminates it.Ashok Erramilli, Matthew Roughan, Darryl Veitch and Walter Willinge
    corecore