523 research outputs found

    ARQ Protocols in Cognitive Decode-and-Forward Relay Networks: Opportunities Gain

    Get PDF
    In this paper, two novel automatic-repeat-request (ARQ) based protocols were proposed, which exploit coop- eration opportunity inherent in secondary retransmission to create access opportunities. If the signal was not decoded correctly in destination, another user can be acted as a relay to reduce retransmission rounds by relaying the signal. For comparison, we also propose a Direct ARQ Protocol. Specif- ically, we derive the exact closed-form outage probability of three protocols, which provides an effective means to evalu- ate the effects of several parameters. Moreover, we propose a new metric to evaluate the performance improvement for cognitive networks. Finally, Monte Carlo simulations were presented to validate the theory analysis, and a comparison is made among the three protocols

    Cooperative Relaying in Wireless Networks under Spatially and Temporally Correlated Interference

    Full text link
    We analyze the performance of an interference-limited, decode-and-forward, cooperative relaying system that comprises a source, a destination, and NN relays, placed arbitrarily on the plane and suffering from interference by a set of interferers placed according to a spatial Poisson process. In each transmission attempt, first the transmitter sends a packet; subsequently, a single one of the relays that received the packet correctly, if such a relay exists, retransmits it. We consider both selection combining and maximal ratio combining at the destination, Rayleigh fading, and interferer mobility. We derive expressions for the probability that a single transmission attempt is successful, as well as for the distribution of the transmission attempts until a packet is transmitted successfully. Results provide design guidelines applicable to a wide range of systems. Overall, the temporal and spatial characteristics of the interference play a significant role in shaping the system performance. Maximal ratio combining is only helpful when relays are close to the destination; in harsh environments, having many relays is especially helpful, and relay placement is critical; the performance improves when interferer mobility increases; and a tradeoff exists between energy efficiency and throughput

    Cooperative diversity techniques for high-throughput wireless relay networks

    Get PDF
    Relay communications has attracted a growing interest in wireless communications with application to various enhanced technologies. This thesis considers a number of issues related to data throughput in various wireless relay network models. Particularly, new implementations of network coding (NC) and space-time coding (STC) techniques are investigated to offer various means of achieving high-throughput relay communications. Firstly, this thesis investigates different practical automatic repeat request (ARQ) retransmission protocols based on NC for two-way wireless relay networks to improve throughput efficiency. Two improved NC-based ARQ schemes are designed based on go-back-N and selective-repeat (SR) protocols. Addressing ARQ issues in multisource multidestination relay networks, a new NC-based ARQ protocol is proposed and two packet-combination algorithms are developed for retransmissions at relay and sources to significantly improve the throughput. In relation to the concept of channel quality indicator (CQI) reporting in two-way relay networks, two new efficient CQI reporting schemes are designed based on NC to improve the system throughput by allowing two terminals to simultaneously estimate the CQI of the distant terminal-relay link without incurring additional overhead. The transmission time for CQI feedback at the relays is reduced by half while the increase in complexity and the loss of performance are shown to be negligible. Furthermore, a low-complexity relay selection scheme is suggested to reduce the relay searching complexity. For the acknowledgment (ACK) process, this thesis proposes a new block ACK scheme based on NC to significantly reduce the ACK overheads and therefore produce an enhanced throughput. The proposed scheme is also shown to improve the reliability of block ACK transmission and reduce the number of data retransmissions for a higher system throughput. Additionally, this thesis presents a new cooperative retransmission scheme based on relay cooperation and NC to considerably reduce the number of retransmission packets and im- prove the reliability of retransmissions for a more power efficient and higher throughput system with non-overlapped retransmissions. Moreover, two relay selection schemes are recommended to determine the optimised number of relays for the retransmission. Finally, with respect to cognitive wireless relay networks (CWRNs), this thesis proposes a new cooperative spectrum sensing (CSS) scheme to improve the spectrum sensing performance and design a new CSS scheme based on NC for three-hop CWRNs to improve system throughput. Furthermore, a new distributed space-time-frequency block code (DSTFBC) is designed for a two- hop nonregenerative CWRN over frequency-selective fading channels. The proposed DSTFBC design achieves higher data rate, spatial diversity gain, and decoupling detection of data blocks at all destination nodes with a low-complexity receiver structure

    Link Quality Control Mechanism for Selective and Opportunistic AF Relaying in Cooperative ARQs: A MLSD Perspective

    Full text link
    Incorporating relaying techniques into Automatic Repeat reQuest (ARQ) mechanisms gives a general impression of diversity and throughput enhancements. Allowing overhearing among multiple relays is also a known approach to increase the number of participating relays in ARQs. However, when opportunistic amplify-and-forward (AF) relaying is applied to cooperative ARQs, the system design becomes nontrivial and even involved. Based on outage analysis, the spatial and temporal diversities are first found sensitive to the received signal qualities of relays, and a link quality control mechanism is then developed to prescreen candidate relays in order to explore the diversity of cooperative ARQs with a selective and opportunistic AF (SOAF) relaying method. According to the analysis, the temporal and spatial diversities can be fully exploited if proper thresholds are set for each hop along the relaying routes. The SOAF relaying method is further examined from a packet delivery viewpoint. By the principle of the maximum likelihood sequence detection (MLSD), sufficient conditions on the link quality are established for the proposed SOAF-relaying-based ARQ scheme to attain its potential diversity order in the packet error rates (PERs) of MLSD. The conditions depend on the minimum codeword distance and the average signal-to-noise ratio (SNR). Furthermore, from a heuristic viewpoint, we also develop a threshold searching algorithm for the proposed SOAF relaying and link quality method to exploit both the diversity and the SNR gains in PER. The effectiveness of the proposed thresholding mechanism is verified via simulations with trellis codes.Comment: This paper has been withdrawn by the authors due to an improper proof for Theorem 2. To avoid a misleading understanding, we thus decide to withdraw this pape

    H2-ARQ-relaying: spectrum and energy efficiency perspectives

    Get PDF
    In this paper, we propose novel Hybrid Automatic Repeat re-Quest (HARQ) strategies used in conjunction with hybrid relaying schemes, named as H2-ARQ-Relaying. The strategies allow the relay to dynamically switch between amplify-and-forward/compress-and-forward and decode-and-forward schemes according to its decoding status. The performance analysis is conducted from both the spectrum and energy efficiency perspectives. The spectrum efficiency of the proposed strategies, in terms of the maximum throughput, is significantly improved compared with their non-hybrid counterparts under the same constraints. The consumed energy per bit is optimized by manipulating the node activation time, the transmission energy and the power allocation between the source and the relay. The circuitry energy consumption of all involved nodes is taken into consideration. Numerical results shed light on how and when the energy efficiency can be improved in cooperative HARQ. For instance, cooperative HARQ is shown to be energy efficient in long distance transmission only. Furthermore, we consider the fact that the compress-and-forward scheme requires instantaneous signal to noise ratios of all three constituent links. However, this requirement can be impractical in some cases. In this regard, we introduce an improved strategy where only partial and affordable channel state information feedback is needed

    Reliable and energy-efficient cooperative transmission in wireless sensor networks.

    Get PDF
    • …
    corecore