1,224 research outputs found

    Design Guidelines for Training-based MIMO Systems with Feedback

    Full text link
    In this paper, we study the optimal training and data transmission strategies for block fading multiple-input multiple-output (MIMO) systems with feedback. We consider both the channel gain feedback (CGF) system and the channel covariance feedback (CCF) system. Using an accurate capacity lower bound as a figure of merit, we investigate the optimization problems on the temporal power allocation to training and data transmission as well as the training length. For CGF systems without feedback delay, we prove that the optimal solutions coincide with those for non-feedback systems. Moreover, we show that these solutions stay nearly optimal even in the presence of feedback delay. This finding is important for practical MIMO training design. For CCF systems, the optimal training length can be less than the number of transmit antennas, which is verified through numerical analysis. Taking this fact into account, we propose a simple yet near optimal transmission strategy for CCF systems, and derive the optimal temporal power allocation over pilot and data transmission.Comment: Submitted to IEEE Trans. Signal Processin

    Adaptive Bit Partitioning for Multicell Intercell Interference Nulling with Delayed Limited Feedback

    Full text link
    Base station cooperation can exploit knowledge of the users' channel state information (CSI) at the transmitters to manage co-channel interference. Users have to feedback CSI of the desired and interfering channels using finite-bandwidth backhaul links. Existing codebook designs for single-cell limited feedback can be used for multicell cooperation by partitioning the available feedback resources between the multiple channels. In this paper, a new feedback-bit allocation strategy is proposed, as a function of the delays in the communication links and received signal strengths in the downlink. Channel temporal correlation is modeled as a function of delay using the Gauss-Markov model. Closed-form expressions for bit partitions are derived to allocate more bits to quantize the stronger channels with smaller delays and fewer bits to weaker channels with larger delays, assuming random vector quantization. Cellular network simulations are used to show that the proposed algorithm yields higher sum-rates than an equal-bit allocation technique.Comment: Submitted to IEEE Transactions on Signal Processing, July 201

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com

    Performance Analysis of Heterogeneous Feedback Design in an OFDMA Downlink with Partial and Imperfect Feedback

    Full text link
    Current OFDMA systems group resource blocks into subband to form the basic feedback unit. Homogeneous feedback design with a common subband size is not aware of the heterogeneous channel statistics among users. Under a general correlated channel model, we demonstrate the gain of matching the subband size to the underlying channel statistics motivating heterogeneous feedback design with different subband sizes and feedback resources across clusters of users. Employing the best-M partial feedback strategy, users with smaller subband size would convey more partial feedback to match the frequency selectivity. In order to develop an analytical framework to investigate the impact of partial feedback and potential imperfections, we leverage the multi-cluster subband fading model. The perfect feedback scenario is thoroughly analyzed, and the closed form expression for the average sum rate is derived for the heterogeneous partial feedback system. We proceed to examine the effect of imperfections due to channel estimation error and feedback delay, which leads to additional consideration of system outage. Two transmission strategies: the fix rate and the variable rate, are considered for the outage analysis. We also investigate how to adapt to the imperfections in order to maximize the average goodput under heterogeneous partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Full Diversity Unitary Precoded Integer-Forcing

    Full text link
    We consider a point-to-point flat-fading MIMO channel with channel state information known both at transmitter and receiver. At the transmitter side, a lattice coding scheme is employed at each antenna to map information symbols to independent lattice codewords drawn from the same codebook. Each lattice codeword is then multiplied by a unitary precoding matrix P{\bf P} and sent through the channel. At the receiver side, an integer-forcing (IF) linear receiver is employed. We denote this scheme as unitary precoded integer-forcing (UPIF). We show that UPIF can achieve full-diversity under a constraint based on the shortest vector of a lattice generated by the precoding matrix P{\bf P}. This constraint and a simpler version of that provide design criteria for two types of full-diversity UPIF. Type I uses a unitary precoder that adapts at each channel realization. Type II uses a unitary precoder, which remains fixed for all channel realizations. We then verify our results by computer simulations in 2×22\times2, and 4×44\times 4 MIMO using different QAM constellations. We finally show that the proposed Type II UPIF outperform the MIMO precoding X-codes at high data rates.Comment: 12 pages, 8 figures, to appear in IEEE-TW

    Distributed space-time block coding in cooperative relay networks with application in cognitive radio

    Get PDF
    Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied
    corecore