13,888 research outputs found

    When parallel speedups hit the memory wall

    Get PDF
    After Amdahl's trailblazing work, many other authors proposed analytical speedup models but none have considered the limiting effect of the memory wall. These models exploited aspects such as problem-size variation, memory size, communication overhead, and synchronization overhead, but data-access delays are assumed to be constant. Nevertheless, such delays can vary, for example, according to the number of cores used and the ratio between processor and memory frequencies. Given the large number of possible configurations of operating frequency and number of cores that current architectures can offer, suitable speedup models to describe such variations among these configurations are quite desirable for off-line or on-line scheduling decisions. This work proposes new parallel speedup models that account for variations of the average data-access delay to describe the limiting effect of the memory wall on parallel speedups. Analytical results indicate that the proposed modeling can capture the desired behavior while experimental hardware results validate the former. Additionally, we show that when accounting for parameters that reflect the intrinsic characteristics of the applications, such as degree of parallelism and susceptibility to the memory wall, our proposal has significant advantages over machine-learning-based modeling. Moreover, besides being black-box modeling, our experiments show that conventional machine-learning modeling needs about one order of magnitude more measurements to reach the same level of accuracy achieved in our modeling.Comment: 24 page

    Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm

    Get PDF
    Exploration of task mappings plays a crucial role in achieving high performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms. The problem of optimally mapping a set of tasks onto a set of given heterogeneous processors for maximal throughput has been known, in general, to be NP-complete. The problem is further exacerbated when multiple applications (i.e., bigger task sets) and the communication between tasks are also considered. Previous research has shown that Genetic Algorithms (GA) typically are a good choice to solve this problem when the solution space is relatively small. However, when the size of the problem space increases, classic genetic algorithms still suffer from the problem of long evolution times. To address this problem, this paper proposes a novel bias-elitist genetic algorithm that is guided by domain-specific heuristics to speed up the evolution process. Experimental results reveal that our proposed algorithm is able to handle large scale task mapping problems and produces high-quality mapping solutions in only a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time
    corecore