64 research outputs found

    Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations

    Full text link
    [EN] In this work, we performed an study about the domain of existence and uniqueness for an efficient fifth order iterative method for solving nonlinear problems treated in their infinite dimensional form. The hypotheses for the operator and starting guess are weaker than in the previous studies. We assume omega continuity condition on second order Frechet derivative. This fact it is motivated by showing different problems where the nonlinear operators that define the equation do not verify Lipschitz and Holder condition; however, these operators verify the omega condition established. Then, the semilocal convergence balls are obtained and the R-order of convergence and error bounds can be obtained by following thee main theorem. Finally, we perform a numerical experience by solving a nonlinear Hammerstein integral equations in order to show the applicability of the theoretical results by obtaining the existence and uniqueness balls.This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22.Singh, S.; Martínez Molada, E.; Kumar, A.; Gupta, DK. (2020). Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations. Mathematics. 8(3):1-11. https://doi.org/10.3390/math8030384S11183Hernández, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41(3-4), 433-445. doi:10.1016/s0898-1221(00)00286-8Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Hueso, J. L., & Martínez, E. (2013). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms, 67(2), 365-384. doi:10.1007/s11075-013-9795-7Zhao, Y., & Wu, Q. (2008). Newton–Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space. Applied Mathematics and Computation, 202(1), 243-251. doi:10.1016/j.amc.2008.02.004Parida, P. K., & Gupta, D. K. (2007). Recurrence relations for a Newton-like method in Banach spaces. Journal of Computational and Applied Mathematics, 206(2), 873-887. doi:10.1016/j.cam.2006.08.027Parida, P. K., & Gupta, D. K. (2008). Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces. Journal of Mathematical Analysis and Applications, 345(1), 350-361. doi:10.1016/j.jmaa.2008.03.064Cordero, A., Ezquerro, J. A., Hernández-Verón, M. A., & Torregrosa, J. R. (2015). On the local convergence of a fifth-order iterative method in Banach spaces. Applied Mathematics and Computation, 251, 396-403. doi:10.1016/j.amc.2014.11.084Argyros, I. K., & Hilout, S. (2013). On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 245, 1-9. doi:10.1016/j.cam.2012.12.002Argyros, I. K., George, S., & Magreñán, Á. A. (2015). Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order. Journal of Computational and Applied Mathematics, 282, 215-224. doi:10.1016/j.cam.2014.12.023Wang, X., Kou, J., & Gu, C. (2012). Semilocal Convergence of a Class of Modified Super-Halley Methods in Banach Spaces. Journal of Optimization Theory and Applications, 153(3), 779-793. doi:10.1007/s10957-012-9985-9Argyros, I. K., & Magreñán, Á. A. (2015). A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numerical Algorithms, 71(1), 1-23. doi:10.1007/s11075-015-9981-xWu, Q., & Zhao, Y. (2007). Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method. Applied Mathematics and Computation, 192(2), 405-412. doi:10.1016/j.amc.2007.03.018Martínez, E., Singh, S., Hueso, J. L., & Gupta, D. K. (2016). Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation, 281, 252-265. doi:10.1016/j.amc.2016.01.036Kumar, A., Gupta, D. K., Martínez, E., & Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics, 330, 732-741. doi:10.1016/j.cam.2017.02.042Singh, S., Gupta, D. K., Martínez, E., & Hueso, J. L. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 13(6), 4219-4235. doi:10.1007/s00009-016-0741-

    On the convergence of a damped-secant method with modified right-hand side vector

    Full text link
    [EN] We present a convergence analysis for a Damped Secant method with modified right-hand side vector in order to approximate a locally unique solution of a nonlinear equation in a Banach spaces setting. In the special case when the method is defined on Ri , our method provides computable error estimates based on the initial data. Such estimates were not given in relevant studies such as (Herceg et al., 1996; Krejic´, 2002). Numerical examples further validating the theoretical results are also presented in this study.The authors thank to the anonymous referee for his/her valuable comments and for the suggestions to improve the final version of the paper. This work is partially supported by UNIR Research Support Strategy 2013-2015, under the CYBERSE-CURITICS.es Research Group [http://research.unir.net].Argyros, IK.; Cordero Barbero, A.; Magreñán Ruiz, ÁA.; Torregrosa Sánchez, JR. (2015). On the convergence of a damped-secant method with modified right-hand side vector. Applied Mathematics and Computation. 252:315-323. doi:10.1016/j.amc.2014.12.029S31532325

    A Unified Convergence Analysis for Some Two-Point Type Methods for Nonsmooth Operators

    Get PDF
    The aim of this paper is the approximation of nonlinear equations using iterative methods. We present a unified convergence analysis for some two-point type methods. This way we compare specializations of our method using not necessarily the same convergence criteria. We consider both semilocal and local analysis. In the first one, the hypotheses are imposed on the initial guess and in the second on the solution. The results can be applied for smooth and nonsmooth operators.Research of the first and third authors supported in part by Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 20928/PI/18 and by MTM2015-64382-P. Research of the fourth and fifth authors supported by Ministerio de Economía y Competitividad under grant MTM2014-52016-C2-1P. This research received no external funding

    Convergence Conditions for the Secant Method

    Full text link

    New sufficient convergence conditions for the secant method

    Get PDF
    summary:We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated

    Semilocal Convergence of the Extension of Chun's Method

    Full text link
    [EN] In this work, we use the technique of recurrence relations to prove the semilocal convergence in Banach spaces of the multidimensional extension of Chun's iterative method. This is an iterative method of fourth order, that can be transferred to the multivariable case by using the divided difference operator. We obtain the domain of existence and uniqueness by taking a suitable starting point and imposing a Lipschitz condition to the first Frechet derivative in the whole domain. Moreover, we apply the theoretical results obtained to a nonlinear integral equation of Hammerstein type, showing the applicability of our results.This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE) and FONDOCYT 027-2018 Republica Dominicana.Cordero Barbero, A.; Maimó, JG.; Martínez Molada, E.; Torregrosa Sánchez, JR.; Vassileva, MP. (2021). Semilocal Convergence of the Extension of Chun's Method. Axioms. 10(3):1-11. https://doi.org/10.3390/axioms10030161S11110

    On the local convergence of a deformed Newton's method under Argyros-type condition

    Get PDF
    AbstractFor the iteration which was independently proposed by King [R.F. King, Tangent method for nonlinear equations, Numer. Math. 18 (1972) 298–304] and Werner [W. Werner, Über ein Verfarhren der Ordnung 1+2 zur Nullstellenbestimmung, Numer. Math. 32 (1979) 333–342] for solving a nonlinear operator equation in Banach space, we established a local convergence theorem under the condition which was introduced recently by Argyros [I.K. Argyros, A unifying local-semilocal convergence analysis and application for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374–397]
    corecore