2,658 research outputs found

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication

    Attosecond Precision Multi-km Laser-Microwave Network

    Full text link
    Synchronous laser-microwave networks delivering attosecond timing precision are highly desirable in many advanced applications, such as geodesy, very-long-baseline interferometry, high-precision navigation and multi-telescope arrays. In particular, rapidly expanding photon science facilities like X-ray free-electron lasers and intense laser beamlines require system-wide attosecond-level synchronization of dozens of optical and microwave signals up to kilometer distances. Once equipped with such precision, these facilities will initiate radically new science by shedding light on molecular and atomic processes happening on the attosecond timescale, such as intramolecular charge transfer, Auger processes and their impact on X-ray imaging. Here, we present for the first time a complete synchronous laser-microwave network with attosecond precision, which is achieved through new metrological devices and careful balancing of fiber nonlinearities and fundamental noise contributions. We demonstrate timing stabilization of a 4.7-km fiber network and remote optical-optical synchronization across a 3.5-km fiber link with an overall timing jitter of 580 and 680 attoseconds RMS, respectively, for over 40 hours. Ultimately we realize a complete laser-microwave network with 950-attosecond timing jitter for 18 hours. This work can enable next-generation attosecond photon-science facilities to revolutionize many research fields from structural biology to material science and chemistry to fundamental physics.Comment: 42 pages, 13 figure

    Fringe Visibility Estimators for the Palomar Testbed Interferometer

    Get PDF
    Visibility estimators and their performance are presented for use with the Palomar Testbed Interferometer (PTI). One operational mode of PTI is single-baseline visibility measurement using pathlength modulation with synchronous readout by a NICMOS-3 infrared array. Visibility is estimated from the fringe quadratures, either incoherently, or using source phase referencing to provide a longer coherent integration time. The visibility estimators differ those used with photon-counting detectors in order to account for biases attributable to detector offsets and read noise. The performance of these estimators is affected not only by photon noise, but also by the detector read noise and errors in estimating the bias corrections, which affect the incoherent and coherent estimators differently. Corrections for visibility loss in the coherent estimators using the measured tracking jitter are also presented.Comment: PASP in press (Jan 99). 13 Pages, no figure

    Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience.

    Get PDF
    Identifying low-dimensional features that describe large-scale neural recordings is a major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to be a salient feature of neural dynamics, but are not succinctly captured by traditional dimensionality reduction techniques. Here, we describe a software toolbox-called seqNMF-with new methods for extracting informative, non-redundant, sequences from high-dimensional neural data, testing the significance of these extracted patterns, and assessing the prevalence of sequential structure in data. We test these methods on simulated data under multiple noise conditions, and on several real neural and behavioral datas. In hippocampal data, seqNMF identifies neural sequences that match those calculated manually by reference to behavioral events. In songbird data, seqNMF discovers neural sequences in untutored birds that lack stereotyped songs. Thus, by identifying temporal structure directly from neural data, seqNMF enables dissection of complex neural circuits without relying on temporal references from stimuli or behavioral outputs

    Performance function for time-jittered equispaced sampling wattmeters

    Get PDF
    This paper evaluates the effect of time-jitter in the equally spaced sampling wattmeters on the hypothesis of equal effects in the two channels and a jitter uncorrelated with the input signals. It is shown that time-jitter, which is a random fluctuation with respect to the nominal sampling time, introduces a frequency limitation which is evaluated together with that due to the sampling strategy and filtering algorithm. The theoretical results are compared with the simulated one

    Satellite-to-satellite system and orbital error estimates

    Get PDF
    Satellite-to-satellite tracking and orbit computation accuracy is evaluated on the basis of data obtained from near earth spacecraft via the geostationary ATS-6. The near earth spacecraft involved are Apollo-Soyuz, GEOS-3, and NIMBUS-6. In addition ATS-6 is being tracked by a new scheme wherein a single ground transmitter interrogates several ground based transponders via ATS-6 to achieve the precision geostationary orbits essential in satellite-to-satellite orbit computation. Also one way Doppler data is being recorded aboard NIMBUS-6 to determine the position of meteorological platforms. Accuracy assessments associated with the foregoing mission related experiments are discussed

    The effect of time-jitter in equispaced sampling wattmeters

    Get PDF
    This paper evaluates the effect of time-jitters in the equally spaced sampling wattmeters on the hypothesis of jitters uncorrelated with the input signals. The general case of two distinct time-jitters is considered, one common to the two channels and the other different for each one of them. The performance of the wattmeter has been evaluated by considering the asymptotic statistic parameters of the output. It has been shown that the different time-jitters introduce a bias and that both time-jitters contribute to the variance of the output. In any case, time-jitters introduce further bandwidth limitations which must be taken into account in the wattmeter accuracy evaluation. The theoretical results have been compared with simulated and experimental findings. Experimental results were obtained with a prototype in which both common and different time-jitters were separately added to the equally spaced sampling instants of the two input channels. In both cases, all the results were in good agreement with theoretical expectation

    Waveform acquisition with resolutions exceeding those of the ADCs employed

    Get PDF
    This chapter discusses various software/firmware and hardware methods and architectures to improve the fidelity of the acquired waveforms beyond the vertical and horizontal resolutions that are possible with the ADC employed. The applicability of these approaches, and the limits on the enhancements that are achievable, depend upon the nature of the acquired waveform, and they are presented separately for one-shot, repeatable and repetitive waveforms. The possibilities of combining applicable methods in order to simultaneously increase both resolutions are also discussed. The consideration is illustrated by the simulation results and the acquired experimental waveforms relevant to the ultrasonic non-destructive evaluation
    corecore