355 research outputs found

    A Genetic Programming Approach for Computer Vision: Classifying High-level Image Features from Convolutional Layers with an Evolutionary Algorithm

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceComputer Vision is a sub-field of Artificial Intelligence that provides a visual perception component to computers, mimicking human intelligence. One of its tasks is image classification and Convolutional Neural Networks (CNNs) have been the most implemented algorithm in the last few years, with few changes made to the fully-connected layer of those neural networks. Nonetheless, recent research has been showing their accuracy could be improved in certain cases by implementing other algorithms for the classification of high-level image features from convolutional layers. Thus, the main research question for this document is: To what extent does the substitution of the fully-connected layer in Convolutional Neural Networks for an evolutionary algorithm affect the performance of those CNN models? The proposed two-step approach in this study does the classification of high-level image features with a state-of-the-art GP-based algorithm for multiclass classification called M4GP. This is conducted using secondary data with different characteristics, to better benchmark the implementation and to carefully investigate different outcomes. Results indicate the new learning approach yielded similar performance in the dataset with a low number of output classes. However, none of the M4GP models was able to surpass the results of the fully-connected layers in terms of test accuracy. Even so, this might be an interesting route if one has a powerful computer and needs a very light classifier in terms of model size. The results help to understand in which situation it might be beneficial to perform a similar experimental setup, either in the context of a work project or concerning a novel research topic

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    Evolving Ensembles with TPOT

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceMachine learning has become popular in recent years as a solution to various problems such as fraud detection, weather prediction, improve diagnosis accuracy, and more. One of its goals is to find the model that best explains the problem. Among the several alternatives on how to accomplish that, significant attention has been laid on the matter of accuracy using stacking ensembles: the objective is to produce a more accurate prediction by combining the predictions of various estimators. This model has often been exhibiting a superior performance in contrast to its single counterparts. Because the process of choosing the best model for a given problem can be time-consuming, a necessity to automatize the machine learning process has emerged. Different tools allow this, including TPOT, a Python library that uses genetic programming to optimize the machine learning process, evolving pipelines randomly created until the best one is found, or a previously fixed maximum number of generations for the given problem is reached. Genetic programming is a field of machine learning that uses evolutionary algorithms to generate new computer programs, and it has been shown successful in quite a few applications. TPOT uses several machine learning algorithms from the Sklearn Python library. It also features some ensembles, such as Random Forest or AdaBoost. Currently, stacking ensembles are not implemented yet on TPOT, and, considering its current accuracy rates, the objective of this thesis is to implement stacking ensembles in TPOT. After we implemented stacking ensembles successfully in TPOT, we performed some experiments with different datasets and noticed that for almost all of them, TPOT has comparable performance to TPOT with stacking ensembles. Also, we observed that, when using the light dictionary version of TPOT, the results of the Stacking configuration improved for two datasets since it used weaker learners

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Applications of Molecular Dynamics simulations for biomolecular systems and improvements to density-based clustering in the analysis

    Get PDF
    Molecular Dynamics simulations provide a powerful tool to study biomolecular systems with atomistic detail. The key to better understand the function and behaviour of these molecules can often be found in their structural variability. Simulations can help to expose this information that is otherwise experimentally hard or impossible to attain. This work covers two application examples for which a sampling and a characterisation of the conformational ensemble could reveal the structural basis to answer a topical research question. For the fungal toxin phalloidin—a small bicyclic peptide—observed product ratios in different cyclisation reactions could be rationalised by assessing the conformational pre-organisation of precursor fragments. For the C-type lectin receptor langerin, conformational changes induced by different side-chain protonations could deliver an explanation of the pH-dependency in the protein’s calcium-binding. The investigations were accompanied by the continued development of a density-based clustering protocol into a respective software package, which is generally well applicable for the use case of extracting conformational states from Molecular Dynamics data

    Deployment of Deep Neural Networks on Dedicated Hardware Accelerators

    Get PDF
    Deep Neural Networks (DNNs) have established themselves as powerful tools for a wide range of complex tasks, for example computer vision or natural language processing. DNNs are notoriously demanding on compute resources and as a result, dedicated hardware accelerators for all use cases are developed. Different accelerators provide solutions from hyper scaling cloud environments for the training of DNNs to inference devices in embedded systems. They implement intrinsics for complex operations directly in hardware. A common example are intrinsics for matrix multiplication. However, there exists a gap between the ecosystems of applications for deep learning practitioners and hardware accelerators. HowDNNs can efficiently utilize the specialized hardware intrinsics is still mainly defined by human hardware and software experts. Methods to automatically utilize hardware intrinsics in DNN operators are a subject of active research. Existing literature often works with transformationdriven approaches, which aim to establish a sequence of program rewrites and data-layout transformations such that the hardware intrinsic can be used to compute the operator. However, the complexity this of task has not yet been explored, especially for less frequently used operators like Capsule Routing. And not only the implementation of DNN operators with intrinsics is challenging, also their optimization on the target device is difficult. Hardware-in-the-loop tools are often used for this problem. They use latency measurements of implementations candidates to find the fastest one. However, specialized accelerators can have memory and programming limitations, so that not every arithmetically correct implementation is a valid program for the accelerator. These invalid implementations can lead to unnecessary long the optimization time. This work investigates the complexity of transformation-driven processes to automatically embed hardware intrinsics into DNN operators. It is explored with a custom, graph-based intermediate representation (IR). While operators like Fully Connected Layers can be handled with reasonable effort, increasing operator complexity or advanced data-layout transformation can lead to scaling issues. Building on these insights, this work proposes a novel method to embed hardware intrinsics into DNN operators. It is based on a dataflow analysis. The dataflow embedding method allows the exploration of how intrinsics and operators match without explicit transformations. From the results it can derive the data layout and program structure necessary to compute the operator with the intrinsic. A prototype implementation for a dedicated hardware accelerator demonstrates state-of-the art performance for a wide range of convolutions, while being agnostic to the data layout. For some operators in the benchmark, the presented method can also generate alternative implementation strategies to improve hardware utilization, resulting in a geo-mean speed-up of ×2.813 while reducing the memory footprint. Lastly, by curating the initial set of possible implementations for the hardware-in-the-loop optimization, the median timeto- solution is reduced by a factor of ×2.40. At the same time, the possibility to have prolonged searches due a bad initial set of implementations is reduced, improving the optimization’s robustness by ×2.35

    Contributions to the mathematical modeling of estimation of distribution algorithms and pseudo-boolean functions

    Get PDF
    134 p.Maximice o minimice una función objetivo definida sobre un espacio discreto. Dado que la mayoría de dichos problemas no pueden ser resueltos mediante una búsqueda exhaustiva, su resolución se aproxima frecuentemente mediante algoritmos heurísticos. Sin embargo, no existe ningún algoritmo que se comporte mejor que el resto de algoritmos para resolver todas las instancias de cualquier problema. Por ello, el objetivo ideal es, dado una instancia de un problema, saber cuál es el algoritmo cuya resoluciones más eficiente. Las dos líneas principales de investigación para lograr dicho objetivo son estudiar las definiciones de los problemas y las posibles instancias que cada problema puede generar y el estudio delos diseños y características de los algoritmos. En esta tesis, se han tratado ambas lineas. Por un lado,hemos estudiado las funciones pseudo-Booleanas y varios problemas binarios específicos. Por otro lado,se ha presentado un modelado matemático para estudiar Algoritmos de Estimación de Distribuciones diseñados para resolver problemas basados en permutaciones. La principal motivación ha sido seguir progresando en este campo para comprender mejor las relaciones entre los Problemas de Optimización Combinatoria y los algoritmos de optimización
    • …
    corecore