5,015 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Cooperative Spectrum Sensing Using Random Matrix Theory

    Full text link
    In this paper, using tools from asymptotic random matrix theory, a new cooperative scheme for frequency band sensing is introduced for both AWGN and fading channels. Unlike previous works in the field, the new scheme does not require the knowledge of the noise statistics or its variance and is related to the behavior of the largest and smallest eigenvalue of random matrices. Remarkably, simulations show that the asymptotic claims hold even for a small number of observations (which makes it convenient for time-varying topologies), outperforming classical energy detection techniques.Comment: Submitted to International Symposium on Wireless Pervasive Computing 200

    Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay

    Full text link
    In this paper, we investigate the joint spectrum sensing and resource allocation problem to maximize throughput capacity of an OFDM-based cognitive radio link with a cognitive relay. By applying a cognitive relay that uses decode and forward (D&F), we achieve more reliable communications, generating less interference (by needing less transmit power) and more diversity gain. In order to account for imperfections in spectrum sensing, the proposed schemes jointly modify energy detector thresholds and allocates transmit powers to all cognitive radio (CR) subcarriers, while simultaneously assigning subcarrier pairs for secondary users (SU) and the cognitive relay. This problem is cast as a constrained optimization problem with constraints on (1) interference introduced by the SU and the cognitive relay to the PUs; (2) miss-detection and false alarm probabilities and (3) subcarrier pairing for transmission on the SU transmitter and the cognitive relay and (4) minimum Quality of Service (QoS) for each CR subcarrier. We propose one optimal and two sub-optimal schemes all of which are compared to other schemes in the literature. Simulation results show that the proposed schemes achieve significantly higher throughput than other schemes in the literature for different relay situations.Comment: EAI Endorsed Transactions on Wireless Spectrum 14(1): e4 Published 13th Apr 201

    Cooperative wideband spectrum sensing with multi-bit hard decision in cognitive radio

    Get PDF
    Cognitive radio offers an increasingly attractive solution to overcome the underutilization problem. A sensor network based cooperative wideband spectrum sensing is proposed in this paper. The purpose of the sensor network is to determine the frequencies of the sources and reduced the total sensing time using a multi-resolution sensing technique. The final result is computed by data fusion of multi-bit decisions made by each cooperating secondary user. Simulation results show improved performance in energy efficiency

    Cooperative sensing of spectrum opportunities

    Get PDF
    Reliability and availability of sensing information gathered from local spectrum sensing (LSS) by a single Cognitive Radio is strongly affected by the propagation conditions, period of sensing, and geographical position of the device. For this reason, cooperative spectrum sensing (CSS) was largely proposed in order to improve LSS performance by using cooperation between Secondary Users (SUs). The goal of this chapter is to provide a general analysis on CSS for cognitive radio networks (CRNs). Firstly, the theoretical system model for centralized CSS is introduced, together with a preliminary discussion on several fusion rules and operative modes. Moreover, three main aspects of CSS that substantially differentiate the theoretical model from realistic application scenarios are analyzed: (i) the presence of spatiotemporal correlation between decisions by different SUs; (ii) the possible mobility of SUs; and (iii) the nonideality of the control channel between the SUs and the Fusion Center (FC). For each aspect, a possible practical solution for network organization is presented, showing that, in particular for the first two aspects, cluster-based CSS, in which sensing SUs are properly chosen, could mitigate the impact of such realistic assumptions
    • …
    corecore