159 research outputs found

    An analysis of rotation matrix and colour constancy data augmentation in classifying images of animals

    Get PDF
    In this paper, we examine a novel data augmentation (DA) method that transforms an image into a new image containing multiple rotated copies of the original image. The DA method creates a grid of cells, in which each cell contains a different randomly rotated image and introduces a natural background in the newly created image. We investigate the use of deep learning to assess the classification performance on the rotation matrix or original dataset with colour constancy versions of the datasets. For the colour constancy methods, we use two well-known retinex techniques: the multi-scale retinex and the multi-scale retinex with colour restoration for enhancing both original (ORIG) and rotation matrix (ROT) images. We perform experiments on three datasets containing images of animals, from which the first dataset is collected by us and contains aerial images of cows or non-cow backgrounds. To classify the Aerial UAV images, we use a convolutional neural network (CNN) architecture and compare two loss functions (hinge loss and cross-entropy loss). Additionally, we compare the CNN to classical feature-based techniques combined with a k-nearest neighbour classifier or a support vector machine. The best approach is then used to examine the colour constancy DA variants, ORIG and ROT-DA alone for three datasets (Aerial UAV, Bird-600 and Croatia fish). The results show that the rotation matrix data augmentation is very helpful for the Aerial UAV dataset. Furthermore, the colour constancy data augmentation is helpful for the Bird-600 dataset. Finally, the results show that the fine-tuned CNNs significantly outperform the CNNs trained from scratch on the Croatia fish and the Bird-600 datasets, and obtain very high accuracies on the Aerial UAV and Bird-600 datasets

    Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy

    Get PDF
    SummarySynapses are often far from their cell bodies and must largely independently cope with dysfunctional proteins resulting from synaptic activity and stress. To identify membrane-associated machines that can engulf synaptic targets destined for degradation, we performed a large-scale in vitro liposome-based screen followed by functional studies. We identified a presynaptically enriched chaperone Hsc70-4 that bends membranes based on its ability to oligomerize. This activity promotes endosomal microautophagy and the turnover of specific synaptic proteins. Loss of microautophagy slows down neurotransmission while gain of microautophagy increases neurotransmission. Interestingly, Sgt, a cochaperone of Hsc70-4, is able to switch the activity of Hsc70-4 from synaptic endosomal microautophagy toward chaperone activity. Hence, Hsc70-4 controls rejuvenation of the synaptic protein pool in a dual way: either by refolding proteins together with Sgt, or by targeting them for degradation by facilitating endosomal microautophagy based on its membrane deforming activity

    Deep learning for animal recognition

    Get PDF
    Deep learning has obtained many successes in different computer vision tasks such as classification, detection, and segmentation of objects or faces. Many of these successes can be ascribed to training deep convolutional neural network architectures on a dataset containing many images. Limited research has explored deep learning methods for performing recognition or detection of animals using a limited number of images. This thesis examines the use of different deep learning techniques and conventional computer vision methods for performing animal recognition or detection with relatively small training datasets and has the following objectives: 1) Analyse the performance of deep learning systems compared to classical approaches when there exists a limited number of images of animals; 2) Develop an algorithm for effectively dealing with rotation variation naturally present in aerial images; 3) Construct a computer vision system that is more robust to illumination variation; 4) Analyse how important the use of different color spaces is in deep learning; 5) Compare different deep convolutional neural-network algorithms for detecting and recognizing individual instances (identities) in a group of animals, for example, badgers. For most of the experiments, effectively reduced neural network recognition systems are used, which are derived from existing architectures. These reduced systems are compared to standard architectures and classical computer vision methods. We also propose a color transformation algorithm, a novel rotation-matrix data-augmentation algorithm and a hybrid variant of such a method, that factors color constancy with the aim to enhance images and construct a system that is more robust to different kinds of visual appearances. The results show that our proposed algorithms aid deep learning systems to become more accurate in classifying animals for a large number of different animal datasets. Furthermore, the developed systems yield performances that significantly surpass classical computer vision techniques, even with limited amounts of available images for training

    Unravelling the effect of data augmentation transformations in polyp segmentation

    Get PDF
    Purpose: Data augmentation is a common technique to overcome the lack of large annotated databases, a usual situation when applying deep learning to medical imaging problems. Nevertheless, there is no consensus on which transformations to apply for a particular field. This work aims at identifying the effect of different transformations on polyp segmentation using deep learning. Methods: A set of transformations and ranges have been selected, considering image-based (width and height shift, rotation, shear, zooming, horizontal and vertical flip and elastic deformation), pixel-based (changes in brightness and contrast) and application-based (specular lights and blurry frames) transformations. A model has been trained under the same conditions without data augmentation transformations (baseline) and for each of the transformation and ranges, using CVC-EndoSceneStill and Kvasir-SEG, independently. Statistical analysis is performed to compare the baseline performance against results of each range of each transformation on the same test set for each dataset. Results: This basic method identifies the most adequate transformations for each dataset. For CVC-EndoSceneStill, changes in brightness and contrast significantly improve the model performance. On the contrary, Kvasir-SEG benefits to a greater extent from the image-based transformations, especially rotation and shear. Augmentation with synthetic specular lights also improves the performance. Conclusion: Despite being infrequently used, pixel-based transformations show a great potential to improve polyp segmentation in CVC-EndoSceneStill. On the other hand, image-based transformations are more suitable for Kvasir-SEG. Problem-based transformations behave similarly in both datasets. Polyp area, brightness and contrast of the dataset have an influence on these differences.This work was partially supported by PICCOLO project. This project has received funding from the European Union’s Horizon2020 research and innovation programme under Grant Agreement No 732111. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein

    Detection and Recognition of Badgers Using Deep Learning

    Get PDF
    This paper describes the use of two different deep-learning algorithms for object detection to recognize different badgers. We use recordings of four different badgers under varying background illuminations. In total four different object detection algorithms based on deep neural networks are compared: The single shot multi-box detector (SSD) with the Inception-V2 or MobileNet as a backbone, and the faster region-based convolutional neural network (Faster R-CNN) combined with Inception-V2 or residual networks. Furthermore, two different activation functions are compared to compute probabilities that some badger is in the detected region: the softmax and sigmoid functions. The results of all eight models show that SSD obtains higher recognition accuracies (97.8%–98.6%) than Faster R-CNN (84.8%–91.7%). However, the training time of Faster R-CNN is much shorter than that of SSD. The use of different output activation functions seems not to matter much

    Image Manipulation and Image Synthesis

    Get PDF
    Image manipulation is of historic importance. Ever since the advent of photography, pictures have been manipulated for various reasons. Historic rulers often used image manipulation techniques for the purpose of self-portrayal or propaganda. In many cases, the goal is to manipulate human behaviour by spreading credible misinformation. Photographs, by their nature, portray the real world and as such are more credible to humans. However, image manipulation may not only serve evil purposes. In this thesis, we propose and analyse methods for image manipulation that serve a positive purpose. Specifically, we treat image manipulation as a tool for solving other tasks. For this, we model image manipulation as an image-to-image translation (I2I) task, i.e., a system that receives an image as input and outputs a manipulated version of the input. We propose multiple I2I based methods. We demonstrate that I2I based image manipulation methods can be used to reduce motion blur in videos. Second, we show that I2I based image manipulation methods can be used for domain adaptation and domain extension. Specifically, we present a method that significantly improves the learning of semantic segmentation from synthetic source data. The same technique can be applied to learning nighttime semantic segmentation from daylight images. Next, we show that I2I can be used to enable weakly supervised object segmentation. We show that each individual task requires and allows for different levels of supervision during the training of deep models in order to achieve best performance. We discuss the importance of maintaining control over the output of such methods and show that, with reduced levels of supervision, methods for maintaining stability during training and for establishing control over the output of a system become increasingly important. We propose multiple methods that solve the issues that arise in such systems. Finally, we demonstrate that our proposed mechanisms for control can be adapted to synthesise images from scratch

    Image Color Correction, Enhancement, and Editing

    Get PDF
    This thesis presents methods and approaches to image color correction, color enhancement, and color editing. To begin, we study the color correction problem from the standpoint of the camera's image signal processor (ISP). A camera's ISP is hardware that applies a series of in-camera image processing and color manipulation steps, many of which are nonlinear in nature, to render the initial sensor image to its final photo-finished representation saved in the 8-bit standard RGB (sRGB) color space. As white balance (WB) is one of the major procedures applied by the ISP for color correction, this thesis presents two different methods for ISP white balancing. Afterwards, we discuss another scenario of correcting and editing image colors, where we present a set of methods to correct and edit WB settings for images that have been improperly white-balanced by the ISP. Then, we explore another factor that has a significant impact on the quality of camera-rendered colors, in which we outline two different methods to correct exposure errors in camera-rendered images. Lastly, we discuss post-capture auto color editing and manipulation. In particular, we propose auto image recoloring methods to generate different realistic versions of the same camera-rendered image with new colors. Through extensive evaluations, we demonstrate that our methods provide superior solutions compared to existing alternatives targeting color correction, color enhancement, and color editing
    • …
    corecore